CS 61C Spring 2015
 Guerrilla Section 2: Caches \& Floating Point

Problem 1:

Compare the performance of three cache designs for a byte-addressed memory system:

- Cache 1: A direct-mapped cache with four blocks, each block holding one word.
- Cache 2: A 16B 2-way set associative cache with 4B blocks and LRU replacement policy.
- Cache 3: A 16B fully associative cache with 4B blocks and LRU replacement policy.

For the following sequences of memory accesses starting from a cold cache, calculate the miss rate of each cache if the accesses are repeated for a large number of times. All addresses are given in decimal (not hexadecimal).
a. Memory Accesses: 0, 4, 0, 4, (repeats)

Cache 1: \qquad Cache 2: \qquad Cache 3: \qquad
b. Memory Accesses: $0,16,32,0,16,32$, (repeats)

Cache 1: \qquad Cache 2: \qquad Cache 3: \qquad
c. Memory Accesses: $0,4,8,12,16,0,4,8,12,16$, (repeats)

Cache 1: \qquad Cache 2: \qquad Cache 3: \qquad
d. Memory Accesses: 0, 4, 8, 12, 16, 12, 8, 4, 0, 4, 8, 12, 16, 12, 8, 4, (repeats)

Cache 1: \qquad Cache 2: \qquad Cache 3: \qquad

Problem 2:

Question 1:

a. You are given a 16 KiB direct-mapped cache with 128 B blocks and a write-back policy. Assume a 64-bit address space and byte-addressed memory.

Tag: \qquad Index: \qquad Offset: \qquad
b. We have a 32-bit byte-addressed machine with an 8-way set-associative cache that uses 32 B blocks and has a total capacity of 8 KiB .

Tag: \qquad Index: \qquad Offset: \qquad
Question 2:
Look at the following snippet of code.

```
#define LENGTH 16384 // 16384 = 2^14
char A[LENGTH];
for (int i = 0; i < LENGTH; i += 64) A[i] = A[i + 32]; // Loop 1
for (int i = LENGTH / 4; i >= 1; i /= 2) A[i] = A[i * 2]; // Loop 2
```

Let's use the cache parameters given in Part 1a. Assume that $A[0]$ is at the beginning of a cache block and that the cache is initially empty.
a. What is the hit rate of Loop 1 ? \qquad
b. What type(s) of misses occur in Loop 1? \qquad
c. What is the hit rate of Loop 2? \qquad
d. What is the hit rate of Loop 2 if the cache was emptied after Loop 1? \qquad

Problem 3:

a. Calculate the AMAT for a system with the following properties:

- L1 cache hits in 1 cycle with local hit rate 20%
- L2 cache hits in 10 cycles with local hit rate 80%
- L3 cache hits in 100 cycles with local hit rate 90%
- Main memory always hits in 1000 cycles
b. How slow can you go? Your system consists of the following:
- L1 cache hits in 2 cycles with a miss rate of 20%
- L2 cache hits in 10 cycles
- Main memory always hits in 300 cycles

You want your AMAT to be <= 22 cycles. What does your local L2 miss rate need to be? What is the equivalent global miss rate?

Problem 4:

a. What is the value of $0 x F 0000000$ if interpreted as a 32-bit floating point number? Recall that the bias for an IEEE 754 32-bit float is 127.
b. What is the smallest number larger than your answer above (Problem 4a) which can be represented by an IEEE 754 32-bit float? Write your answer in hexadecimal.
c. Using IEEE 754 32-bit floating point, what is the largest positive number x that makes this expression true: $x+1.0=1.0$? Assume that we truncate any bits outside of the significand field. Write your answer in hexadecimal.

