
CS 61C Spring 2015
Guerrilla Section 2: Caches & Floating Point

Problem 1:

Compare the performance of three cache designs for a byte-addressed memory system:

 Cache 1: A direct-mapped cache with four blocks, each block holding one word.

 Cache 2: A 16B 2-way set associative cache with 4B blocks and LRU replacement policy.

 Cache 3: A 16B fully associative cache with 4B blocks and LRU replacement policy.

For the following sequences of memory accesses starting from a cold cache, calculate the miss rate
of each cache if the accesses are repeated for a large number of times. All addresses are given in
decimal (not hexadecimal).

a. Memory Accesses: 0, 4, 0, 4, (repeats)

Cache 1: ____0%____ Cache 2: ____0%____ Cache 3: ____0%____

b. Memory Accesses: 0, 16, 32, 0, 16, 32, (repeats)

Cache 1: ____100%____ Cache 2: ____100%____ Cache 3: ____0%____

c. Memory Accesses: 0, 4, 8, 12, 16, 0, 4, 8, 12, 16, (repeats)

Cache 1: ____40%____ Cache 2: ____60%____ Cache 3: ____100%____

d. Memory Accesses: 0, 4, 8, 12, 16, 12, 8, 4, 0, 4, 8, 12, 16, 12, 8, 4, (repeats)

Cache 1: ____25%____ Cache 2: ____25%____ Cache 3: ____25%____

Problem 2:

Question 1:
a. You are given a 16 KiB direct-mapped cache with 128 B blocks and a write-back policy. Assume a
64-bit address space and byte-addressed memory.

Tag: ___50___ Index: ___7____ Offset: ___7____

b. We have a 32-bit byte-addressed machine with an 8-way set-associative cache that uses 32 B
blocks and has a total capacity of 8 KiB.

Tag: ___22___ Index: ___5____ Offset: ___5____

Question 2:
Look at the following snippet of code.

#define LENGTH 16384 // 16384 = 2^14

char A[LENGTH];

for (int i = 0; i < LENGTH; i += 64) A[i] = A[i + 32]; // Loop 1

for (int i = LENGTH / 4; i >= 1; i /= 2) A[i] = A[i * 2]; // Loop 2

Let’s use the cache parameters given in Part 1a. Assume that A[0] is at the beginning of a cache
block and that the cache is initially empty.

a. What is the hit rate of Loop 1? ______________

The hit rate is 75%. This is because the block size is 128 bytes, and we are looking at indices i + 32,
i, i + 96, and i + 64. The first access will miss and the last 3 will hit.

b. What type(s) of misses occur in Loop 1? __________________________________

Compulsory misses only. The cache is just large enough to fit the array, so there are no conflict
misses.

c. What is the hit rate of Loop 2? ______________

The hit rate is 100% because the entire array has been loaded into the cache.

d. What is the hit rate of Loop 2 if the cache was emptied after Loop 1? ______

18/26. Index accesses are: 8192-m, 4096-m, 4096-h, 2048-m, 2048-h, 1024-m, 1024-h, 512-m, 512-
h, 256-m, 256-h, 128-m, 128-h, 64-m, 64-h, 32-h, 32-h, 16-h, 16-h, 8-h, 8-h, 4-h, 4-h, 2-h, 2-h, 1-h.

18 hits, 8 misses

Problem 3:

a. Calculate the AMAT for a system with the following properties:

 L1 cache hits in 1 cycle with local hit rate 20%
 L2 cache hits in 10 cycles with local hit rate 80%
 L3 cache hits in 100 cycles with local hit rate 90%
 Main memory always hits in 1000 cycles

AMAT = 1 + (1 − 0.2)(10 + (1 − 0.8)(100 + (1 − 0.9)(1000))) = 41

b. How slow can you go? Your system consists of the following:

 L1 cache hits in 2 cycles with a miss rate of 20%

 L2 cache hits in 10 cycles

 Main memory always hits in 300 cycles

You want your AMAT to be <= 22 cycles. What does your local L2 miss rate need to be? What is the
equivalent global miss rate?

AMAT = L1 Hit time + L1 Miss rate * (L2 Hit time + L2 Local Miss rate * L2 Miss penalty)
22 >= 2 + 0.2 * (10 + X * 300)
X = .3, or 30% local miss rate
Global miss rate = 30% * 20% = 6%

Problem 4:

a. What is the value of 0xF0000000 if interpreted as a 32-bit floating point number? Recall that the
bias for an IEEE 754 32-bit float is 127.

-297. 0xF0000000 = 1 11100000 00…00 = - 2(128 + 64 + 32 – 127) x 1.0 = -297.

b. What is the smallest number larger than your answer above (Problem 4a) which can be
represented by an IEEE 754 32-bit float? Write your answer in hexadecimal.

0xEFFFFFFF. Since this is a negative number, we want the magnitude to be smaller than 297. The
largest such number is 1.11111… x 2-96. 1 11011111 11…11, or 0xEFFFFFFF.

c. Using IEEE 754 32-bit floating point, what is the largest positive number x that makes this
expression true: x + 1.0 = 1.0? Assume that we truncate any bits outside of the significand field. Write
your answer in hexadecimal.

0x33FFFFFF. Since 1.0 contains 23 bits of precision, if the value of x was smaller than 2-23, then the
addition result will be lost to truncation. Since 2-23 = 1.0 x 2-23, the largest number smaller than 2-23 is
1.11111… x 2-24. This is equivalent to 0 01100111 11…11, or 0x33FFFFFF.

