
CS61C Homework 3 - C to MIPS Practice Problems

TA: Sagar Karandikar

Spring 2015

This homework is an ungraded assignment designed to familiarize you with translating C code to MIPS.

We will release solutions on Sunday, Feb 22nd, so that you may use them to study for the exam.

Problem 1 - Useful Snippets

In this section, we’ll take the same problem (that of printing a string) and approach it using different C

constructs. This should allow you to see how various C constructs are translated into MIPS.

Suppose that we have a print function, but that this function only takes one character and prints it to

the screen. It expects the character to be in the lower 8 bits of $a0.

A) Translate into MIPS, while preserving the while loop structure:

void string_print(char *print_me) {

while (*print_me != ’\0’) {

print(*print_me);

print_me++;

}

}

B) Translate into MIPS, while preserving the for loop structure (your function is given the string length):

void string_print(char *print_me, int slen) {

for (int i = 0; i < slen; i++) {

print(*(print_me+i));

}

}

C) Translate into MIPS, while preserving the do while loop structure:

void string_print(char *print_me) {

if (!(*print_me)) {

return;

1

}

do {

print(*print_me);

print_me++;

} while (*print_me);

}

Problem 2 - Recursive Fibonacci

Convert the following recursive implementation of Fibonacci to MIPS. Do not convert it to an iterative

solution.

int fib(int n) {

if (n == 0) {

return 0;

} else if (n == 1) {

return 1;

}

return fib(n-1) + fib(n-2);

}

Problem 3 - Memoized Fibonacci

Now, modify your recursive Fibonacci implementation to memoize results. For the sake of simplicity, you

can assume that the array given to you (memolist) is at least n elements long for any n. Additionally, the

array is initialized to all zeros.

int fib(int n, int* memolist) {

if (n == 0) {

return 0;

} else if (n == 1) {

return 1;

}

if (memolist[n]) {

return memolist[n];

}

memolist[n] = fib(n-1, memolist) + fib(n-2, memolist);

return memolist[n];

}

2

Problem 4 - Self-Modifying MIPS

Write a MIPS function that performs identically to this code when called many times in a row, but does not

store the static variable in the static segment (or even the heap or stack):

short nextshort() {

static short a = 0;

return a++;

}

Tips/Hints:

• You can assume that the short type is 16 bits wide. shorts represent signed numbers.

• You can assume that your MIPS code is allowed to modify any part of memory.

• See the title of this question.

3

