
CS61C Midterm 2 
Review Session
Problems + Solutions



Floating Point



Big Ideas in Number Rep
● Represent a large range of values by trading 

off precision.
● Store a number of fixed size (significand) 

and “float” its radix point around (exponent).



FP Format

= (-1)Sign × 2Exp (from biased) × (1 + Sig)
for normalized numbers

● IEEE-754 32-bit float: 8 exp bits, 23 sig bits
● Same rules regardless of size!

Sign    Exp             Significand



Types of FP Numbers
Value of Exp field?

Value of Sig field?

NormalizedDenorm∞ NaN

00…00
Anything 

else11…11

00…00 Anything 
else



Normalized vs. Denorm
Normalized number:

    (-1)Sign × 2Exp (from biased) × (1 + Sig)
Denormalized number:

    (-1)Sign × 2Exp (from biased) +1 × (0 + 
Sig)

Eg. For IEEE 754 float, 00000000biased = -127,
          so exponent is -126



FP Exercises 1
Format: [ 1-bit sign | 4-bit exp | 3-bit sig ]

What is the bias?

Convert to FP:
2.5

Convert from FP:
0b01001011



FP Exercises 1
Format: [ 1-bit sign | 4-bit exp | 3-bit sig ]

What is the bias? 2(4-1) -1 = 7

Convert to FP:
2.5

Convert from FP:
0b01001011



FP Exercises 1
Format: [ 1-bit sign | 4-bit exp | 3-bit sig ], bias=7

Convert to FP:
2.5 = 2 + 0.5
      = 21 + 2-1

      = (1 + 2-2) x 21 
  Sign: 0b0,  Exp: 0b1000,  Sig: 0b010

Result: 0b01000010



FP Exercises 1
Format: [ 1-bit sign | 4-bit exp | 3-bit sig ], bias=7

Convert from FP:
0b01001011 = 1 x (1 + 2-2 + 2-3) x 2(9-7) 
                     = 22 + 20 + 2-1

                     = 4 + 1 + 0.5
                     = 5.5



FP Exercises 2
Format: [ 1-bit sign | 4-bit exp | 3-bit sig ], bias=7

● What is the bit pattern of the smallest positive 
number representable?

● What is the smallest positive integer NOT 
representable?



FP Exercises 2
Format: [ 1-bit sign | 4-bit exp | 3-bit sig ], bias=7

● What is the bit pattern of the smallest positive 
number representable?

  Bit pattern: 0bXXXXXXXX



FP Exercises 2
Format: [ 1-bit sign | 4-bit exp | 3-bit sig ], bias=7

● What is the bit pattern of the smallest 
positive number representable?

  Bit pattern: 0b0XXXXXXX



FP Exercises 2
Format: [ 1-bit sign | 4-bit exp | 3-bit sig ], bias=7

● What is the bit pattern of the smallest positive 
number representable?

Strategy: use the smallest denorm
  Bit pattern: 0b00000XXX



FP Exercises 2
Format: [ 1-bit sign | 4-bit exp | 3-bit sig ], bias=7

● What is the bit pattern of the smallest positive 
number representable?

Strategy: use the smallest denorm
  Final answer: 0b00000001



FP Exercises 2
Format: [ 1-bit sign | 4-bit exp | 3-bit sig ], bias=7

● What is the smallest positive integer NOT 
representable?

Strategy: We know a float with significand bits 
m1m2...mn (mk= 0 or 1) equals:
  (-1)Sign x (1 + 2-1m1 + 2-2m2 + ...  + 2-nmn) x 2Exp

so if n > # of significand bits, we can’t represent it



FP Exercises 2
Format: [ 1-bit sign | 4-bit exp | 3-bit sig ], bias=7

● What is the smallest normalized positive 
integer NOT representable?

Thus we want (-1)Sign x (1 + 2-n) x 2Exp, n = 4
Number is positive, so we want (1 + 2-4) x 2Exp



FP Exercises 2
Format: [ 1-bit sign | 4-bit exp | 3-bit sig ], bias=7

● What is the smallest normalized positive 
integer NOT representable?

(1 + 2-4) x 2Exp = 2Exp + 2Exp - 4 
Since, 2Exp - 4 must be an integer, and smallest 
value of 2Exp - 4 is 20= 1, Exp = 4

Thus, 2Exp + 2Exp - 4 = 24 + 20 = 17



Digital Logic



Boolean Algebra
OR is + (e.g. A+B)
AND is ∙ or simply juxtaposed (e.g. A∙B, AB)
NOT is ~ or an overline (e.g. ~A, A)

OR and AND are commutative and associative.

De Morgan’s Laws
A∙B = A + B
A + B = A∙B



Warm-Up: Circuit 
Simplification
Rebuild this circuit with the fewest gates, using 
only AND, OR and NOT gates.



Warm-Up: Circuit 
Simplification
~A * B + ~A * ~B + ~B
= ~A (B + ~B) + ~B
= ~A + ~B



Delays
● Setup Time: time needed for the input to be 

stable before the rising edge of the clock.
● Hold Time: time needed for the input to be 

stable after the rising edge of the clock.
● CLK-to-Q Delay: the time needed for the 

input of the register to be passed to the 
output of the register after the rising edge of 
the clock.



Delays
● Max Delay: Delay between two registers.

○ Also known as the critical path time.
● Max Delay = CLK-to-Q Delay

                  + Combinational Logic Delay
                  + Setup Time

● Max Frequency = 1/Max Delay



Warm-Up: Clocking
Choose an XOR gate for the circuit below. The clock speed 
is 2GHz (1/(500ps)); the setup, hold, and clock-to-q times 
of the register are 40, 70, and 60 picoseconds (10-12 s) 
respectively. Assume the input comes from a clocked 
register as well.

What range of XOR gate
delays is acceptable?

e.g., “at least W ps”,
“at most X ps”, or “Y to Z ps”.



Warm-Up: Clocking
Max Delay = 500ps
Max Delay = CLK to Q + XOR Delay + Setup Time
XOR Delay = 500 - 40 - 60
XOR Delay = 400 ps

What if XOR Delay = 0 ps?
You’ll violate the Hold Time!
Need an XOR delay of at least Hold Time - CLK to Q
= 10 ps

10 <= XOR Delay <= 400 ps



Past Exam Question (Garcia Fall 2014)

Using as few states as possible, complete the 
following finite state machine that takes a 
ternary (base-3) digit as input (0, 1, or 2). This
machine should output a 1 if the sequence of 
ternary digits forms an odd number, otherwise it 
should output a 0.

Example: 1, 1, 2 → 1123 (1410) → even



Past Exam Question (Garcia Fall 2014)

Input: ternary digit
Output: 1 if sequence is odd, 0 if even.

A Bstart

1/1



Past Exam Question (Garcia Fall 2014)

Input: ternary digit
Output: 1 if sequence is odd, 0 if even.

A Bstart

0/0

2/0

1/1
0/1

2/1
1/0



Past Exam Question (Garcia Fall 2014)

If the delay through a single-bit adder is:
● 3 (measured in gate delays) to the sum output
● 2 to the carry output

What is the delay through a k-bit ripple-carry 
adder?



Past Exam Question (Garcia Fall 2014)



Past Exam Question (Garcia Fall 2014)

2

2

2

3

2k+1



CPU Architecture



Datapath & Control
● Be able to trace the execution of MIPS 

instructions through the CPU
● Understand how the new PC value is 

calculated
● Know how to modify datapath & control 

signals to implement a new instruction





Example: Triple Add
New instruction: add3 $rd,$rs,$rt
Adds R[rs], R[rt], R[rd] and stores it into R[rd]

● Which MIPS instruction type would be best 
to represent add3?

● What is the register transfer level (RTL)?



Example: Triple Add
Adds R[rs], R[rt], R[rd] and stores it into R[rd]

● Which MIPS instruction type would be best 
to represent add3? 
R-type

● What is the register transfer level (RTL)?
R[rd] = R[rs] + R[rt] + R[rd]; PC = PC + 4



Triple Add: Datapath
Adds R[rs], R[rt], R[rd] and stores it into R[rd]

Make the minimal amount of changes on the 
datapath (next slide). Assume that the regfile 
has an additional read port for R[rd]. 

You may only add wires, muxes, and adders.



R[rd] = R[rs] + R[rt] + R[rd]; PC = PC + 4



Triple Add: Datapath
1. Identify existing components that helps 

implement the instruction.
2. Of the components NOT used, can any be 

used in the instruction?
3. Create components for anything that’s not 

yet implemented.
4. Wire everything together, adding 

muxes/control signals as needed.



R[rd] = R[rs] + R[rt] + R[rd]; PC = PC + 4



Triple Add: Datapath
Added Components:



Triple Add: Control

Fill in the control signals:
RegDst RegWr nPC_sel ExtOp ALUSrc ALUCtr MemWr Mem2Reg add3



Triple Add: Control

Fill in the control signals:
RegDst RegWr nPC_sel ExtOp ALUSrc ALUCtr MemWr Mem2Reg add3

1 1 +4 X 0 add 0 0 1



Pipelining
● The 5 stage pipeline
● Calculating pipelined performance
● Data and control hazards from a naive 

pipelined CPU
● Ways to reduce stalls, including:

○ Forwarding
○ Forward comparator
○ Delay slots
○ Branch prediction





How many stalls?
How many stalls are needed for the code below 
without/with forwarding?

addiu $s0, $t0, 1

xor $s1, $s0, $t1

What about the following?
lw $s0, 0($t0)

xor $s1, $s0, $t1



How many stalls?
How many stalls are needed for the code below 
without/with forwarding? 2 / 0

addiu $s0, $t0, 1

xor $s1, $s0, $t1

What about the following? 2 / 1
lw $s0, 0($t0)

xor $s1, $s0, $t1



How many stalls?
Consider each separately. How many stalls 
does a branch/jump need on:
● a naive pipelined CPU (no optimization)

● a CPU w/ forward comparator

● a CPU with branch prediction of never take 
branch



How many stalls?
Consider each separately. How many stalls 
does a branch/jump need on:
● a naive pipelined CPU (no optimization)

branch: 2, jump: 1
● a CPU w/ forward comparator

branch: 1, jump: 1
● a CPU with branch prediction of never take 

branch
branch: 0 or 2, jump: 1



Triple Add: Pipelining
For the code on the next slide, calculate the 
number of stalls needed assuming that the 5-stage 
CPU has:
● no forwarding, no forward comparator, no delay 

slots (naive CPU)
● forwarding only
● forwarding + forward comparator + delay slots



Triple Add: Pipelining

LOOP: lw $t0, 0($a0)

ori $t0, $t0, 0xFFFF

add3 $t0, $t1, $a1

sw $t0, 0($a0)

addiu $a0, $a0, 4

addiu $t1, $t1, 1

bne $a0, $a2, LOOP



Triple Add: Pipelining
Naive CPU: (data dependencies in blue)
LOOP: lw $t0, 0($a0) # 2 (data)

ori $t0, $t0, 0xFFFF # 2 (data)

add3 $t0, $t1, $a1 # 2 (data)

sw $t0, 0($a0)

addiu $a0, $a0, 4 # 1 (data)

addiu $t1, $t1, 1

bne $a0, $a2, LOOP # 2 (control)



Triple Add: Pipelining
With forwarding:
LOOP: lw $t0, 0($a0)  # 1 (load-use)

ori $t0, $t0, 0xFFFF

add3 $t0, $t1, $a1

sw $t0, 0($a0)

addiu $a0, $a0, 4

addiu $t1, $t1, 1

bne $a0, $a2, LOOP # 2 (control)



Triple Add: Pipelining
Forwarding + forward comparator + delay 
slots:
LOOP: lw $t0, 0($a0)  # 1 (load-use)

ori $t0, $t0, 0xFFFF

add3 $t0, $t1, $a1

sw $t0, 0($a0)

addiu $a0, $a0, 4

bne $a0, $a2, LOOP

addiu $t1, $t1, 1 # delay slot



Caches & AMAT
Martin Maas



What is a Cache?
● Fast memory near the CPU.
● Stores memory in units of “cache blocks”.
● Cache blocks are aligned in memory, e.g., 

Block 1: [0,32[, Block 2: [32,64[,...
● Memory accesses go to the cache first, 

checks if the block with the address is there 
already, and only if not goes to memory.

● Cache provides a set of slots that can each 
hold a specific cache block.



Fully-associative Cache
● Most intuitive way to design a cache.
● Treat cache as collection of blocks and when 

full, always replace the least-recently used 
(LRU) one; or pick based on other policy.

● When checking for a block, it could be 
anywhere -- need to search in each slot.

● Very expensive to implement in hardware, 
need to compare against every slot.

● Large hit time, not feasible if large capacity.



● Second attempt: Could avoid checking every 
slot by making blocks go to exactly one slot.

● Fast: only need to check one cache entry.
● How to decide? Split up the address:

Direct-mapped Cache

Tag: Addr Space Size - ( #I + #O) Index: log(Number of sets) Offset: log(Block size (bytes))



Data Tag Valid

Block 0

Block 0

Block 0

Block 0

Block 0

Block 0

Block 0

Block 0

Set

0

1

2

3

4

5

6

7

Tag: Addr Space Size - ( #I + #O) Index: log(Number of sets) Offset: log(Block size (bytes))

Tag: 32 - (3+4) = 25 Index: log(8) = 3 Offset: log(16) = 4
Memory:

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Block 8

Block 9 ...
Block=16B, Capacity=128B

Direct-mapped Cache



N-way Set-Associativity
● Problem with direct-mapped: Lots of conflicts 

from blocks mapping to the same set.
● Get the best of both worlds with N-way set 

associativity: Divide cache into “sets” where 
the address tells you which set to go to, and 
then within the set, be associative.

● N tells you how many slots (“ways”) per set. 
That’s the number of entries you need to 
compare for each memory access.



Set-associative Cache

Block 0 Block 1 Block 2 Block 3

Block 0 Block 1 Block 2 Block 3

Block 0 Block 1 Block 2 Block 3

Block 0 Block 1 Block 2 Block 3

Block 0 Block 1 Block 2 Block 3

Block 0 Block 1 Block 2 Block 3

Block 0 Block 1 Block 2 Block 3

Block 0 Block 1 Block 2 Block 3

Set

0

1

2

3

4

5

6

7

Tag: Addr Space Size - ( #I + #O) Index: log(Number of sets) Offset: log(Block size (bytes))

Tag: 32 - (3+4) = 25 Index: log(8) = 3 Offset: log(16) = 4

Block=16B, Capacity=512B



Trade-offs
● Higher associativity = lower miss rate (fewer 

conflicts), higher hit time (more complexity).
● Direct mapped: Associativity of 1, Fully 

associative: Associativity of <Number of 
slots in the cache>

● Number of tag/index/offset bits depends on 
block size and number of sets.

● Number of sets = capacity / size per set =
capacity / (block size * N)



Warmup Question 

In a direct mapped cache, the number of blocks in the 
cache is always the same as: 
A) The number of bytes in the cache
B) The number of offset bits
C) The number of sets
D) The number of rows
E) The number of valid bits
F) 2^(The number of index bits)
G) The number of index bits

(more than one may be correct)



Warmup Question 

In a direct mapped cache, the number of blocks in the 
cache is always the same as: 
A) The number of bytes in the cache
B) The number of offset bits
C) The number of sets
D) The number of rows
E) The number of valid bits
F) 2^(The number of index bits)
G) The number of index bits

(more than one may be correct)



Example Question: Spring ‘14, Final, M2 

     20 7 5

50%



Example Question: Spring ‘14, Final, M2 

50%

75%



Types of Cache Misses
● 1) Compulsory: The first time you bring data 

into the cache.
● 2) Conflict: They would not have happened 

with a fully-associative cache.
● 3) Capacity: They would not have happened 

with an infinitely large cache.
● Finding out which one it is: Check 1, 2, 3 in 

this order and take the first one that applies.



Practice Question

Given a direct-mapped cache, initially empty, 
and the following memory access pattern (all 
byte addresses/accesses, 32-bit addresses)

8, 0, 5, 32, 0, 42, 9

Of what kinds are the different cache misses, 
and what blocks are in the cache after these 
accesses if the cache has a capacity of 16B?



Practice Question

Capacity: 16B, Block size: 4B

First, need T:I:O
Offset = log2(block size) = log2(4) = 2
Index = log2(#slots) = log2(4) = 2
Tag = 32 - 2 - 2 = 28

Say M[x] for the memory at address x



Practice Question

Byte 3 Byte 2 Byte 1 Byte 0

Index 0

Index 1

Index 2

Index 3

T:I:O = 28:2:2, Accesses: 8, 0, 5, 32, 0, 42, 9



Practice Question

Byte 3 Byte 2 Byte 1 Byte 0

Index 0

Index 1

Index 2 M[11] M[10] M[9] M[8]

Index 3

T:I:O = 28:2:2, Accesses: 8, 0, 5, 32, 0, 42, 9

Addr 8 = 0b1000: Tag = 0b0, Index = 0b10, 
Offset = 0b00
Compulsory Miss



Practice Question

Byte 3 Byte 2 Byte 1 Byte 0

Index 0 M[3] M[2] M[1] M[0]

Index 1

Index 2 M[11] M[10] M[9] M[8]

Index 3

T:I:O = 28:2:2, Accesses: 8, 0, 5, 32, 0, 42, 9

Addr 0 = 0b0000: Tag = 0b0, Index = 0b00, 
Offset = 0b00
Compulsory Miss



Practice Question

Byte 3 Byte 2 Byte 1 Byte 0

Index 0 M[3] M[2] M[1] M[0]

Index 1 M[7] M[6] M[5] M[4]

Index 2 M[11] M[10] M[9] M[8]

Index 3

T:I:O = 28:2:2, Accesses: 8, 0, 5, 32, 0, 42, 9

Addr 5 = 0b0101: Tag = 0b0, Index = 0b01, 
Offset = 0b01
Compulsory Miss



Practice Question

Byte 3 Byte 2 Byte 1 Byte 0

Index 0 M[35] M[34] M[33] M[32]

Index 1 M[7] M[6] M[5] M[4]

Index 2 M[11] M[10] M[9] M[8]

Index 3

T:I:O = 28:2:2, Accesses: 8, 0, 5, 32, 0, 42, 9

Addr 32 = 0b100000: Tag = 0b10, Index = 
0b00, Offset = 0b00
Compulsory Miss



Practice Question

Byte 3 Byte 2 Byte 1 Byte 0

Index 0 M[3] M[2] M[1] M[0]

Index 1 M[7] M[6] M[5] M[4]

Index 2 M[11] M[10] M[9] M[8]

Index 3

T:I:O = 28:2:2, Accesses: 8, 0, 5, 32, 0, 42, 9

Addr 0 = 0b0000: Tag = 0b0, Index = 0b00, 
Offset = 0b00
Conflict Miss



Practice Question

Byte 3 Byte 2 Byte 1 Byte 0

Index 0 M[3] M[2] M[1] M[0]

Index 1 M[7] M[6] M[5] M[4]

Index 2 M[43] M[42] M[41] M[40]

Index 3

T:I:O = 28:2:2, Accesses: 8, 0, 5, 32, 0, 42, 9

Addr 42 = 0b101010: Tag = 0b10, Index = 
0b10, Offset = 0b10
Compulsory Miss



Practice Question

Byte 3 Byte 2 Byte 1 Byte 0

Index 0 M[3] M[2] M[1] M[0]

Index 1 M[39] M[38] M[37] M[36]

Index 2 M[11] M[10] M[9] M[8]

Index 3

T:I:O = 28:2:2, Accesses: 8, 0, 5, 32, 0, 42, 9

Addr 9 = 0b1001: Tag = 0b0, Index = 0b10, 
Offset = 0b01
Capacity Miss



Example Question: Spring ‘13, Final, M2 

(H+1)/2

0:1



Example Question: Spring ‘13, Final, M2 

uint8_t tmpA = A[i];
uint8_t tmpB = B[i];
B[i] = tmpA;
A[i] = tmpB;

2a-1:2a+1



Example Question: Spring ‘13, Final, M2 

uint8_t tmpA = A[i];
uint8_t tmpB = B[i];
B[i] = tmpA;
A[i] = tmpB;

2a-1:1 0:1



Cache Miss Rates
● Local Miss Rate: Fraction of accesses going 

into a cache that misses.
● Global Miss Rate: Fraction of all accesses 

that miss at this level and all levels below.
● For inclusive caches, global miss rate is 

usually easier to determine.
● L1: global and local miss rate are the same
● Otherwise: LocalN = GlobalN / Global(N-1)



AMAT
● Estimate efficiency of memory hierarchy.
● Approach 1:

AMAT = L1 Hit Time + L1 Miss Rate * L1 Miss Penalty
           = L1 Hit Time + L1 Miss Rate * L2 AMAT
           = L1 Hit Time + L1 Miss Rate * (L2 Hit Time +
              L2 Miss Rate * L2 Miss Penalty) = …

● Approach 2: 
AMAT = L1 Hit Time + L1 Miss Rate * L2 Hit Time
  + Global L2 Miss Rate * L3 Hit Time
  + Global L3 Miss Rate * (...) + ...



Example Question: Fall ‘10, Final, Q4 

20/40 = 50%

20/1000 = 2%

10/20 = 50%

10/1000 = 1%



Example Question: Fall ‘10, Final, Q4 

1 + 4%*(10+50%*(100+50%*400)) = 1 + 0.4 + 2%*300 = 7.4

1 + 4%*10 + 2%*400 = 1 + 0.4 + 8 = 9.4



GOOD LUCK!!!


