CS61C : Machine Structures

Lecture 2: Introduction To C

THE

C:

PROGRAMMING
CANGUAGE

2005-06-21

@ Andy Carle
CS 61C L2 Introduction to C (1) ACarl

2’s Complement Properties

 As with sign and magnitude,
leading 0s = positive, leading 1s =
negative

- 000000...xxx is 20, 111111..xxx is <0
- except 1...1111 is -1, not -0 (as in sign & mag.)

*Only 1 Zero!

Two’s Complement Formula

- Can represent positive and negative numbers
in terms_of the bit value times a power of 2:

djq x +dypx230+ .. +d,x22+d;x2"+dyx2°

*Example: 1101,
= + 1x22 + 0x2' + 1x2°
+22+ 0+ 20
+4+0+1
+5

A Carle, Summer 2005 o uca]

Review

*Two’s Complement

@ S 61C 2 ntroduction (o C 2) Acarl

2’s Complement Number “line”: N =5
2N pon-
negatives
«2N1 negatives
*one zero

*how manx
positives?

10001 10000 01111

Two’s Complement shortcut: Negation

*Change every 0 to 1 and 1 to 0 (invert or
complement), then add 1 to the result

Proof”: Sum of number and its (one’s)
complement must be 111...111
However, 111...111,,,= “1¢en
Let x’ = one’s complement representation of x
Thenx+xX' =-1=>x+x"+1=0=>x"+1=-x
*Example: -3 to +3 to -3
xX: 1111 1111 1111 1111 1111 1111

x’: 0000 0000 0000 0000 0000 000
+1: 0000 0000 0000 0000

0000 000
): 1111 1111 1111 1111 1111 11
1111 1111 1111 1111 1111 11

two

* Check out

S 61C 12 Introductionto C (6)

A Carle, Summer 2005 o ucs]

Two’s comp. shortcut: Sign extension

» Convert 2’s complement number rep.
using n bits to more than n bits

. Si_mplg_replicate the most significant bit
(sign bit) of smaller to fill new bits
*2’s comp. positive number has infinite 0s
*2’s comp. negative number has infinite 1s

*Binary representation hides leading bits;
sign extension restores some of them

+16-bit -4,,, to 32-bit:
1111 1111 1111 1100,,,,
1111 1111 1111 1111 1111 1111 1111 1100,,,,

s 61C 12 ntroductionto C (7). ACarl

Number Summary

*We represent “things” in computers as
particular bit patterns: N bits = 2N

« Decimal for human calculations, binary for
computers, hex to write binary more easily

*1’s complement - mostly abandoned
00900 00001 ... 01111

1
10000 ... 1111011111
* 2’s complement universal in computing:
cannot avoid, so learn

00?00 00001 ... 01111
Ll

10000 ...1111011111
Overflow: numbers «; computers finite, errors!

S 61C 12 ntroduction o C(9) Acarl

Big Idea

*Next Topic: Numbers can Be Anything!

A Carle, Summer 2005 o uca]

What if too big?
* Binary bit patterns above are simplly
representatives of numbers. Strictly speaking
ey are called “numerals”.
* Numbers really have an « number of digits

« with almost all being same (00...0 or 11...1) except
for a few of the rightmost digits

 Just don’t normally show leading digits
* If result of add (or -, *, /) cannot be

represented by these rightmost HW bits,
overflow is said to have occurred.

00000 00001 00010 . 11110 1111

7 'unsigned
@ 5 61C 12 Introductionto C (8) Acarl

Preview: Signed vs. Unsigned Variables

*Java just declares integers int
*Uses two’s complement

*C has declaration int also
*Declares variable as a signed integer
*Uses two’s complement

*Also, C declaration unsigned int
*Declares a unsigned integer

* Treats 32-bit number as unsigned
integer, so most significant bit is part of
E the number, not a sign bit

S 61C 12 ntroduction o C (10) Acar

BIG IDEA: Bits can represent anything!!

* REMEMBER: N digits in base B = BN values
« For binary in particular: N bits & 2N values
*Characters?
* 26 letters = 5 bits (25 = 32)

* upper/lower case + Bunctuation
=7 bits (in 8) (“ASCII”)

«standard code to cover all the worldk|:-

languages = 16 bits (“Unicode™)

*Logical values?
*0 = False, 1 = True

+colors ? Ex: | il S SN

locations / addresses? commands?

A Carle, Summer 2005 9 ucs]

Cs 61C 12 Introductionto C (12)

Example: Numbers represented in memory

1111 *Memory is a place to
store bits

*A word is a fixed
10110 number of bits (eg, 32)
at an address

*Addresses are
naturally represented
as unsigned numbers
inC

@ SS61C 12 ntroductionto C (13) Acarl

00000

Disclaimer

*Important: You will not learn how to
fully code in C in these lectures!

You'’ll still need your C reference for
this course.

*«K&R is a great reference.

- But... check online for more sources.
*“JAVA in a Nutshell,” O’Reilly.

- Chapter 2, “How Java Differs from C”.

Compilation : Advantages

* Great run-time performance: generally
much faster than Scheme or Java for
comparable code (because it
optimizes for a given architecture)

* OK compilation time: enhancements in
compilation procedure (Makefiles)
allow only modified files to be
recompiled

A Carle, Summer 2005 o uca]

Moving Along

*Next Topic: Intro to C

@ SS61C 2 ntroductionto C (14) Acarl

Compilation : Overview

C compilers take C and convert it into
an architecture specific machine code
(string of 1s and 0s).

« Unlike Java which converts to
architecture independent bytecode.

* Unlike most Scheme environments which
interpret the code.

*Generally a 2 part process of compiling
.c files to .o files, then linking the .o files
into executables

Compilation : Disadvantages

*All comgiled files (including the
executable) are architecture specific,
depending on both the CPU type and
the operating system.

* Executable must be rebuilt on each
new system.

« Called “porting your code” to a new
architecture.

*The “change—compile—run [repeat]”
iteration cycle is slow

A Carle, Summer 2005 9 ucs]

C vs. Java™ Overview (1/2)

Java c
* Object-oriented * No built-in object
(OOP) abstraction. Data
separate from
methods.
* “Methods” « “Functions”

« Class libraries of
data structures

« C libraries are

lower-level
e Automatic * Manual
memory memory
management management
e Pointers

@ SS61C 12 ntroduction o C (19) Acarl

C Syntax: Variable Declarations

*Very similar to Java, but with a few minor
but’important differences

« All variable declarations must go before
H}ggka)re used (at the beginning of the

* A variable may be initialized in its
declaration.
* Examples of declarations:
ecorrect: {
int a =0, b =10;

Z eincorrect: for (int i = 0; i < 10; i++)

S 61C 12 ntroduction o C 21) Acarl

C syntax : flow control

» Within a function, remarkably close to
Java constructs in methods (shows its
legacy) in terms of flow control

eif-else
eswitch

ewhile and for
edo-while

A Carle, Summer 2005 o uca]

C vs. Java™ Overview (2/2)

Java C

*High memory
overhead from
class libraries

* Relatively Slow
* Arrays initialize

*Low memory
overhead

* Relatively Fast
« Arrays initialize

to zero to garbage
* Syntax: « Syntax:
printf

System.out.print

@ S8 61C L2 ntroduction o C (20) Acarl

C Syntax: True or False?

*What evaluates to FALSE in C?
* 0 (integer)
* NULL (pointer: more on this later)
*no such thing as a Boolean

*What evaluates to TRUE in C?
*everything else...

¢ (same idea as in scheme: only #f is
false, everything else is true!)

C Syntax: main

*To get the main function to accept
arguments, use this:

int main (int argc, char *argv[])

*What does this mean?

=argc will contain the number of strings
on the command line (the executable
counts as one, plus one for each
argument).

- Example: unix% sort myFile

eargyv is a pointer to an array containing
the arguments as strings (more on

pointers later).

A Carle, Summer 2005 9 ucs]

Administrivia

First Jabs today (“lab is where the
learning happens™)

*The syllabus is still coming
Stomorrow .— I’'m making a“slight tweak
o the grading policy based on
feedback Prot. Garcia got last
semester

*You will receive a copy of the cheating
;Igollcy to sign and return today in_lab.
The same information will be available
in the syllabus and on the website

*We're still working on getting
everyone enrolled’in a'section

@ SS61C 12 ntroduction o C 25) Acarl

Pointers

*An address refers to a particular
me_mory location. In other words, it
points to a memory location.

*Pointer: A variable that contains the
address of another variable.

Location (address)

\ 101102 103 104 105 ...

[[T T T T [T4 [T ho]--
X y

name /

S 61C 12 ntroductionto C (27) Acarl

Pointers

*How to change a variable pointed to?
« Use dereference * operator on left of =

o[7135]
*p = 5; DIZ X

A Carle, Summer 2005 o uca]

Address vs. Value

*Consider memory to be a single huge
array:

« Each cell of the array has an address
associated with it.

« Each cell also stores some value.

*Don’t confuse the address referring to
a memory location with the value
stored in that location.

101 102 103 104 105
s T T T I T T Jef TT T]

@ S$61C L2 ntroduction o C 26) Acarl

Pointers

*How to create a pointer:
& operator: get address of a variable

H * - Note the “*" gets used
int p » X5 p X 2 different ways in
_ _ this example. In the
X =3 ’ declaration to indicate
p - X that p is going to be a
_ R '\ pointer, and in the
p = &x > 3 printf to get the
p X value pointed to by p.
*How get a value pointed to?
* “dereference operator”: get value pointed to

printf(“p points to %d\n”,*p);

Pointers and Parameter Passing
«Java and C pass a parameter “by value”

« procedure/function gets a copy of the
parameter, so changing the copy cannot
change the original
void addOne (int x) {

X =X + 1;

}

inty = 3;
addOne(y);
ey isstill=3

A Carle, Summer 2005 9 ucs]

Pointers and Parameter Passing

*How to get a function to change a value?
void addOne (int *p) {
*p - *p + 1;
}

inty = 3;
addOne(&y) ;

ey isnow =4

@ s 61C 12 ntroductionto C (31)

Peer Instruction

* A proven method for increasing
student understanding

*The steps:
| ask you a question
*You silently contemplate your answer

- Here, we’re supposed to vote... I'm working
on a mechanism to make that happen in this
room

*When I tell you to, talk to your neighbors
about your answer and settle on a new
answer as a group

- Here we should vote again. I'll probably just
ask someone random for their answer

My Answer

void mainQ); {
int :%, X=

o
<

; /7 init

(+ 10;
flip-sign(p);

3 priﬁtf(gxg&c)i,y=%d,p=%d\n",x,y,*p);

Fflip-sign(int *n){*n = -(*n);}

How many errors? | get 7.

A Carle, Summer 2005 o uca]

Pointers

*Normally a pointer can only point to
one type (int, char, a struct, etc.).

=void *is atype that can point to
anything (generic pointer)

* Use sparingly to help avoid program
bugs... and security issues... and a lot
of other bad things!

@ s 6112 ntroductionto C (32).

The Question

void main(Q); {
int *p, x=5, y; // init
y = *(p = &) + 10;
Hip-gign(p)
ip-sign ;
intg("xg%g?yz%d ,p=%d\n"",x,y,p);
i

ip-sign(int *n){*n = -*n)}

b

How many errors?

And in conclusion...

+ All declarations go at the beginning of
each function.

*Only 0 and NULL evaluate to FALSE.

+All data is in memory. Each memory
location has an address to use to refer
to it and a value stored in it.

* A pointer is a C version of the
address.

** “follows” a pointer to its value
« & gets the address of a value

A Carle, Summer 2005 9 ucs]

