inst.eecs.berkeley.edu/~c561c/su05
CS61C : Machine Structures

Lecture #3: C Pointers & Arrays

2005-06-22

Andy Carle

ACarle Sunmer

Pointers

* A pointer is just a C variable whose
value is the address of another
variable!

* After declaring a pointer:

int *ptr;

ptr doesn’t actually point to anything
yet. We can either:

emake it point to something that already
exists, or

allocate room in memory for something
new that it will point to... (next time)

ACarle, Summer 2005 © uce|

Pointer Usage Example

ot 111 Memory and Pointers:

Oxcafe 0000

xbeef 0000

0x0000 0004
0x0000 0000

Address vs. Value

*What good is a bunch of memory if you
can't select parts of it?

*Each memory cell has an address
associated with it.

*Each cell also stores some value.
*Don’t confuse the address referring to
amemory location with the value
stored inthat location.

101 102 103 104 105 ...

S I 2 O O

Pointers

*Declaring a pointer just allocates
sPace to hold the pointer — it does not
allocate something to be pointed to!

eLocal variables in C are not initialized,
they may contain anything.

ACarle Summer

Pointer Usage Example

oxiit it Memory and Pointers:
int *p, v;

Vi OXXXXXXX Oxcafe 0000

p: OXXXXXXXXX lOxbeef 0000

0x0000 0004
0x0000 0000

Pointer Usage Example

Ot it Memory and Pointers:

int *p, v;

s

DOO0GXK__oxcafe 0000 [) = &V;

p: [Oxcafe 0000 xbeef 0000

0x0000 0004
0x0000 0000

@c ACLO3CAIaVS (D) Calle Summer

Pointer Usage Example

ottt Memory and Pointers:

int *p, v;

v: 0x0000 001b Oxcafe 0000 p = &V’

p: [[__Oxcafe 0000 xbeetoooo VY = 0X17;

*p:*p+4;

0x0000 0004
oxooo00000 \/ = *p + 4

ACarle, Summer 2005 © uce|

C Pointer Dangers

*What does the following code do?

void Q)
{
int *ptr;
*ptr = 5;
s

«SEGFAULT! (on my machine/os)

¢ (Not a nice compiler error like you would
hope!)

Carle, Summer 2005 0 UCh|

Pointer Usage Example

Oxif it Memory and Pointers:

int *p, v;

v 0x0000 0017 Oxcafe 0000 p = &V,

p: Oxcafe 0000 loxbeef 0000 V= OX 171

0x0000 0004
0x0000 0000

@ CSOICL03 CANS(E) Calle, SUNMer 20050 U

Pointers in C
*Why use pointers?

«If we want to pass a huge struct or array,
it's easier to pass a pointer than the
whole thing.

«In general, pointers allow cleaner, more
compact code.

*So what are the drawbacks?

« Pointers are probably the single largest
source of bugs in software, so be careful
anytime you deal with them.

*Dangling reference (premature free)

@ *Memory leaks (tardy free)

CS6ICLo3C A (10)

ACarle Summer

C Pointer Dangers

*Unlike Java, C lets you cast a value of
any type to any other type without
performing any checking.

int x = 1000;
int *p = x; /* invalid */

int *q = (int *) x; /* valid */
*The first pointer declaration is invalid
since the types do not match.

*The second declaration is valid C but is
almost certainly wrong

@ «ls it ever correct?

Cale, SUmme 20050.UCE

Pointers and Parameter Passing
«Java and C pass a parameter “by value”

eprocedure/function gets a copy of the
parameter, so changing the copy cannot
change the original

void addOne (int x) {
X =X + 1;

}

inty = 3;
addOne(y);
ey isstill =3

@c ACL03C AIavS (13) Calle Summer

Arrays (1/7)
*Declaration:
int ar[2];
declares a 2-element integer array.
int ar[] = {795, 635};
declares and fills a 2-elt integer array.

*Accessing elements:
ar[num];

returns the num!" element from 0.

CS61CL03C Arays (15) A Carle, Summer 2005 © Ucg|

Arrays (3/7)

*Consequences:
earis a pointer
«ar[0] is the same as *ar
ear[2] is the same as *(ar+2)
*\We can use pointer arithmetic to access
arrays more conveniently.
*Declared arrays are only allocated
while the scope is valid

char *foo() {
char string[32]; ...;

return string;
@ is incorrect

L

Pointers and Parameter Passing

*«How to get a function to change a value?
void addOne (int *p) {

*p = *p + 1'
}

inty = 3;
addOne(&y) ;

ey isnow =4

@ CSOICLO3CANS () Cale, Summer 200

Arrays (2/7)

*Arrays are (almost) identical to
pointers

echar *string and char string[] are
nearly identical declarations

*They differ in very subtle ways:
incrementing, declaration of filled arrays

*Key Difference:

An array variable is a CONSTANT
pointer to the first element.

ﬂg@fcmmeWUE —

Arrays (4/7)
*Array size n; want to access from 0 to
n-1:
int ar[10], i=0, sum = O;
while (i < 10)
/* sum = sum+ar[i];
i=1+1; *

sum += ar[i++];

@c S1C 103 C AlaYs (18) Salle, SUmmer 20050 U

Arrays (5/7)

*Array size n; want to access from 0 to
n-1, S0 you should use counter AND
utilize a constant for declaration & incr

*Wrong

int 1, ar[10];

for(i = 0; 1 < 10; i++){ ... }
*Right

#define ARRAY_SIZE 10
int i, a[ARRAY_SIZE];
for(i = 0; 1 < ARRAY_SIZE; i++){ ... }

*Why? SINGLE SOURCE OF TRUTH

eYou're utilizing indirection and avoiding
@ maintaining two copies of the number 10

CS61CL03CAIaVS (o) Calle Summer

Arrays 7/7: In Functions

*An array parameter can be declared as
an array or a pointer; an array
argument can be passed as a pointer.

*Can be incremented

int strlen(char s[]) int strlen(char *s)

{

int n = 0; int n = 0;
while (s[n] != 0) while (s[n] !'= 0)
n++; n++;
return n; return n;
} T

Could be written:

Arrays (6/7)

«Pitfall: An array in C does not know its
own length, & bounds not checked!

*Consequence: We can accidentally
access off the end of an array.

*Consequence: We must pass the array
and its size to a procedure which is
going to traverse it.

*Segmentation faults and bus errors:

*These are VERY difficult to find;
be careful!

*You'll learn how to debug these in lab...

CSOICL03 AN 20) Cale, Summer 200

while (s[n])
CSeICL0C AT QY ACane, Sunmer 2005 0 ucal

Pointer Arithmetic (2/5)

*So what’s valid pointer arithmetic?
«Add an integer to a pointer.
e Subtract 2 pointers (in the same array).
«Compare pointers (<, <=, ==, I=, >, >=)

«Compare pointer to NULL (indicates that
the pointer points to nothing).

*Everything else is illegal since it
makes no sense:

eadding two pointers
emultiplying pointers
@ esubtract pointer from integer

CS61CL03C Alavs 03) Carle, Summer 2005 0 UCh|

Pointer Arithmetic (1/5)
«Since a pointer is just a mem address, we
can add'to it to traverse an array.
*p+1 returns a ptr to the next array elt.
* (*p) +1 VS *p++ VS VS *(p) ++ ?
X =*ptt X =Fp ; p= p+1;
e X =(Cp)t+t=>x=*p ; *p=Fp+ 1;

*What if we have an array of large structs
(objects)?

« C takes care of it: In reality, p+1 doesn’t add
1 to the memory address, it adds the size of

Z , the array element.

CS6ICLO3CAaYS (22) ACarle Summer

Pointer Arithmetic (3/5)

*We can use pointer arithmetic to
“walk” through memory:

void copy(int *from, int *to, int n) {

int i;

for (i=0; i<n; i++) {
*to++ = *from++;

}

}

°C automatically adjusts the pointer by
the right amount each time (i.e., 1 byte
for a char, 4 bytes for an int, etc.)

CS6ICL03CANaS) Salle, SUmmer 20050 U

Pointer Arithmetic (4/5)

*C knows the size of the thing a pointer
points to — every addition or
subtraction moves that many bytes.

*So the following are equivalent:
int get(int array[], int n)

{
return (array[n]):
/* OR */
return *(array + n);
}

@c AC 103 C Aavs 05) ACarle, Sunmer 2005 o ucel

Pointer Arithmetic Summary
ex =*(p+l) ?
=x = *(p+l)
ex =*p+l?
=>x=Cp) +1;

T

=X =7p 5 *p=p o+ 13

e X = *p++ ? (*p++) ? *(pP)++ ? *(p++

=X=*p ;p= p+1;
*X = *4+4p ?
=p=p+l;x=7"p;

e Lesson?

CS61CL03C Arays O7) ACarle, Summer 2005 © uce|

@- These cause more problems than they solve!

Pointer Arithmetic Peer Instruction A
¢« How many of the following are invalid?

l. pointer + integer ptr+1
1. integer + pointer 1+ ptr
. pointer + pointer ptr + ptr
IV. pointer —integer ptr-1
V. integer — pointer 1-ptr
VI. pointer — pointer ptr - ptr
VIl. compare pointer to pointer ptrl == ptr2
VIIl. compare pointer to integer ptr==1

IX. compare pointer to 0 ptr == NULL
X. compare pointer to NULL ptr == NULL

Carle, Summer 2005 0 UCh|

Pointer Arithmetic (5/5)
-Ar:rLay size n; want to access from 0 to
n-

e test for exit by comparing to address one
element past the array

int ar[10], *p, *gq, sum = O;
p'= ar; q = &(ar[10]);
fhing (pq!= q§ (101
/* sum = sum + *p; p =p + 1; */
sum += *p++;

*Is this legal?
«C defines that one element past end of

array must be a valid address, i.e., not
Z cause an bus error or address error

CSOICL03 CANaYS 26 Cale SUNMe 20050 UCE

Pointer Arithmetic Peer Instruction Q

How many of the following are invalid?
I. pointer +integer

Il. integer + pointer

Ill. pointer + pointer

IV. pointer —integer

V. integer — pointer

VI. pointer — pointer

VII. compare pointer to pointer
VIIl. compare pointer to integer
IX. compare pointer to 0

X. compare pointer to NULL

“And in Conclusion...”
«Pointers and arrays are virtually same
«C knows how to increment pointers

*C is an efficient language, with little
protection
*Array bounds not checked
«Variables not automatically initialized
«(Beware) The cost of efficiency is
more overhead for the programmer.

«“C gives you a lot of extra rope but be
careful not to hang yourself with it!”

Cale, SUmme 20050.UCE

