
CS 61C L03 C Arrays (1) A Carle, Summer 2005 © UCB

inst.eecs.berkeley.edu/~cs61c/su05
CS61C : Machine Structures
Lecture #3: C Pointers & Arrays

2005-06-22

Andy Carle
CS 61C L03 C Arrays (2) A Carle, Summer 2005 © UCB

Address vs. Value

• What good is a bunch of memory if you
can’t select parts of it?

• Each memory cell has an address
associated with it.

• Each cell also stores some value.

• Don’t confuse the address referring to
a memory location with the value
stored in that location.

23 42 101 102 103 104 105 ...

CS 61C L03 C Arrays (3) A Carle, Summer 2005 © UCB

Pointers

• A pointer is just a C variable whose
value is the address of another
variable!

• After declaring a pointer:
int *ptr;

ptr doesn’t actually point to anything
yet. We can either:

• make it point to something that already
exists, or

• allocate room in memory for something
new that it will point to… (next time)

CS 61C L03 C Arrays (4) A Carle, Summer 2005 © UCB

Pointers

• Declaring a pointer just allocates
space to hold the pointer – it does not
allocate something to be pointed to!

• Local variables in C are not initialized,
they may contain anything.

CS 61C L03 C Arrays (5) A Carle, Summer 2005 © UCB

Pointer Usage Example

Memory and Pointers:0xffff ffff

0x0000 0000

0xcafe 0000

0xbeef 0000

0x0000 0004

CS 61C L03 C Arrays (6) A Carle, Summer 2005 © UCB

Pointer Usage Example

Memory and Pointers:
int *p, v;

0xXXXXXXXX

0xffff ffff

0x0000 0000

0xcafe 0000

0xXXXXXXXX 0xbeef 0000

0x0000 0004

p:

v:

CS 61C L03 C Arrays (7) A Carle, Summer 2005 © UCB

Pointer Usage Example

Memory and Pointers:
int *p, v;
p = &v;0xXXXXXXXX

0xffff ffff

0x0000 0000

0xcafe 0000

0xcafe 0000 0xbeef 0000

0x0000 0004

p:

v:

CS 61C L03 C Arrays (8) A Carle, Summer 2005 © UCB

Pointer Usage Example

Memory and Pointers:
int *p, v;
p = &v;
v = 0x17;

0x0000 0017

0xffff ffff

0x0000 0000

0xcafe 0000

0xcafe 0000 0xbeef 0000

0x0000 0004

p:

v:

CS 61C L03 C Arrays (9) A Carle, Summer 2005 © UCB

Pointer Usage Example

Memory and Pointers:
int *p, v;
p = &v;
v = 0x17;
*p = *p + 4;
V = *p + 4

0x0000 001b

0xffff ffff

0x0000 0000

0xcafe 0000

0xcafe 0000 0xbeef 0000

0x0000 0004

p:

v:

CS 61C L03 C Arrays (10) A Carle, Summer 2005 © UCB

Pointers in C
• Why use pointers?

• If we want to pass a huge struct or array,
it’s easier to pass a pointer than the
whole thing.

• In general, pointers allow cleaner, more
compact code.

• So what are the drawbacks?
• Pointers are probably the single largest
source of bugs in software, so be careful
anytime you deal with them.

• Dangling reference (premature free)
• Memory leaks (tardy free)

CS 61C L03 C Arrays (11) A Carle, Summer 2005 © UCB

C Pointer Dangers

• What does the following code do?

• S E G F A U L T ! (on my machine/os)
• (Not a nice compiler error like you would
hope!)

void f()
{

int *ptr;
*ptr = 5;

}

CS 61C L03 C Arrays (12) A Carle, Summer 2005 © UCB

C Pointer Dangers

• Unlike Java, C lets you cast a value of
any type to any other type without
performing any checking.

int x = 1000;

int *p = x; /* invalid */

int *q = (int *) x; /* valid */

• The first pointer declaration is invalid
since the types do not match.

• The second declaration is valid C but is
almost certainly wrong

• Is it ever correct?

CS 61C L03 C Arrays (13) A Carle, Summer 2005 © UCB

Pointers and Parameter Passing
• Java and C pass a parameter “by value”

• procedure/function gets a copy of the
parameter, so changing the copy cannot
change the original
void addOne (int x) {

x = x + 1;
}

int y = 3;

addOne(y);

•y is still = 3

CS 61C L03 C Arrays (14) A Carle, Summer 2005 © UCB

Pointers and Parameter Passing
• How to get a function to change a value?

void addOne (int *p) {
*p = *p + 1;

}

int y = 3;

addOne(&y);

•y is now = 4

CS 61C L03 C Arrays (15) A Carle, Summer 2005 © UCB

Arrays (1/7)

• Declaration:
int ar[2];

declares a 2-element integer array.

int ar[] = {795, 635};

declares and fills a 2-elt integer array.
• Accessing elements:

ar[num];

returns the num th element from 0.
CS 61C L03 C Arrays (16) A Carle, Summer 2005 © UCB

Arrays (2/7)

• Arrays are (almost) identical to
pointers

•char *string and char string[] are
nearly identical declarations

• They differ in very subtle ways:
incrementing, declaration of filled arrays

• Key Difference:
An array variable is a CONSTANT
pointer to the first element.

CS 61C L03 C Arrays (17) A Carle, Summer 2005 © UCB

Arrays (3/7)

• Consequences:
•ar is a pointer
•ar[0] is the same as *ar
•ar[2] is the same as *(ar+2)
• We can use pointer arithmetic to access
arrays more conveniently.

• Declared arrays are only allocated
while the scope is valid

char *foo() {
char string[32]; ...;
return string;

} is incorrect
CS 61C L03 C Arrays (18) A Carle, Summer 2005 © UCB

Arrays (4/7)

• Array size n; want to access from 0 to
n-1:
int ar[10], i=0, sum = 0;
...
while (i < 10)

/* sum = sum+ar[i];

i = i + 1; */

sum += ar[i++];

CS 61C L03 C Arrays (19) A Carle, Summer 2005 © UCB

Arrays (5/7)

• Array size n; want to access from 0 to
n-1, so you should use counter AND
utilize a constant for declaration & incr

• Wrong
int i, ar[10];
for(i = 0; i < 10; i++){ ... }

• Right
#define ARRAY_SIZE 10
int i, a[ARRAY_SIZE];
for(i = 0; i < ARRAY_SIZE; i++){ ... }

• Why? SINGLE SOURCE OF TRUTH
• You’re utilizing indirection and avoiding
maintaining two copies of the number 10

CS 61C L03 C Arrays (20) A Carle, Summer 2005 © UCB

Arrays (6/7)

• Pitfall: An array in C does not know its
own length, & bounds not checked!

• Consequence: We can accidentally
access off the end of an array.

• Consequence: We must pass the array
and its size to a procedure which is
going to traverse it.

• Segmentation faults and bus errors:
• These are VERY difficult to find;
be careful!

• You’ll learn how to debug these in lab…

CS 61C L03 C Arrays (21) A Carle, Summer 2005 © UCB

Arrays 7/7: In Functions

• An array parameter can be declared as
an array or a pointer; an array
argument can be passed as a pointer.

• Can be incremented

int strlen(char s[])
{

int n = 0;
while (s[n] != 0)

n++;
return n;

}

int strlen(char *s)
{

int n = 0;
while (s[n] != 0)

n++;
return n;

}
Could be written:
while (s[n])

CS 61C L03 C Arrays (22) A Carle, Summer 2005 © UCB

Pointer Arithmetic (1/5)

• Since a pointer is just a mem address, we
can add to it to traverse an array.

•p+1 returns a ptr to the next array elt.
•(*p)+1 vs*p++ vs*(p+1) vs*(p)++ ?

• x = *p++ ⇒ x = *p ; p = p + 1;

• x = (*p)++⇒ x = *p ; *p = *p + 1;

• What if we have an array of large structs
(objects)?

• C takes care of it: In reality, p+1 doesn’t add
1 to the memory address, it adds the size of
the array element.

CS 61C L03 C Arrays (23) A Carle, Summer 2005 © UCB

Pointer Arithmetic (2/5)
• So what’s valid pointer arithmetic?

• Add an integer to a pointer.
• Subtract 2 pointers (in the same array).
• Compare pointers (<, <=, ==, !=, >, >=)
• Compare pointer to NULL (indicates that
the pointer points to nothing).

• Everything else is illegal since it
makes no sense:

• adding two pointers
• multiplying pointers
• subtract pointer from integer

CS 61C L03 C Arrays (24) A Carle, Summer 2005 © UCB

Pointer Arithmetic (3/5)

• We can use pointer arithmetic to
“walk” through memory:

°C automatically adjusts the pointer by
the right amount each time (i.e., 1 byte
for a char, 4 bytes for an int, etc.)

void copy(int *from, int *to, int n) {
int i;
for (i=0; i<n; i++) {

*to++ = *from++;
}

}

CS 61C L03 C Arrays (25) A Carle, Summer 2005 © UCB

int get(int array[], int n)
{

return (array[n]);
/* OR */
return *(array + n);

}

Pointer Arithmetic (4/5)

• C knows the size of the thing a pointer
points to – every addition or
subtraction moves that many bytes.

• So the following are equivalent:

CS 61C L03 C Arrays (26) A Carle, Summer 2005 © UCB

Pointer Arithmetic (5/5)

• Array size n; want to access from 0 to
n-1
• test for exit by comparing to address one
element past the array

int ar[10], *p, *q, sum = 0;
...
p = ar; q = &(ar[10]);
while (p != q)

/* sum = sum + *p; p = p + 1; */
sum += *p++;

• Is this legal?

• C defines that one element past end of
array must be a valid address, i.e., not
cause an bus error or address error

CS 61C L03 C Arrays (27) A Carle, Summer 2005 © UCB

Pointer Arithmetic Summary
• x = *(p+1)?

⇒ x = *(p+1) ;

• x = *p+1 ?
⇒ x = (*p) + 1 ;

• x = (*p)++ ?
⇒ x = *p ; *p = *p + 1;

• x = *p++ ? (*p++)? *(p)++ ? *(p++)?
⇒ x = *p ; p = p + 1;

• x = *++p ?
⇒ p = p + 1 ; x = *p ;

• Lesson?
• These cause more problems than they solve!

CS 61C L03 C Arrays (28) A Carle, Summer 2005 © UCB

Pointer Arithmetic Peer Instruction Q

How many of the following are invalid?
I. pointer + integer
II. integer + pointer
III. pointer + pointer
IV. pointer – integer
V. integer – pointer
VI. pointer – pointer
VII. compare pointer to pointer
VIII. compare pointer to integer
IX. compare pointer to 0
X. compare pointer to NULL

CS 61C L03 C Arrays (29) A Carle, Summer 2005 © UCB

• How many of the following are invalid?
I. pointer + integer
II. integer + pointer
III. pointer + pointer
IV. pointer – integer
V. integer – pointer
VI. pointer – pointer
VII. compare pointer to pointer
VIII. compare pointer to integer
IX. compare pointer to 0
X. compare pointer to NULL

Pointer Arithmetic Peer Instruction A

ptr + 1
1 + ptr

ptr + ptr
ptr - 1
1 - ptr

ptr - ptr
ptr1 == ptr2

ptr == 1
ptr == NULL
ptr == NULL

CS 61C L03 C Arrays (30) A Carle, Summer 2005 © UCB

“And in Conclusion…”
• Pointers and arrays are virtually same
• C knows how to increment pointers
• C is an efficient language, with little
protection

• Array bounds not checked
• Variables not automatically initialized

• (Beware) The cost of efficiency is
more overhead for the programmer.

• “C gives you a lot of extra rope but be
careful not to hang yourself with it!”

