Inst.eecs.berkeley.edu/~cs61c/su05

CS61C : Machine Structures
Lecture #4:. Strings & Structs

2005-06-23
Qf Andy Carle
CS 61C L4 Structs (1) A Carle, Summer 2005© UCB

Review: Arrays

* Arrays are (almost) identical to
pointers

echar *stringand char string|] are
nearly identical declarations

- They differ in subtle ways: incrementing,
declaration of filled arrays

- Key Difference: an array variable is a
CONSTANT pointer to the first element.

car[i] €= *(ar+i)

ﬂ CS 61C L4 Structs (2)

A Carle, Summer 2005 © UCB

Review: Arrays and Pointers

e Array size n; want to access from 0 to n-1:

Array Indexing Versions: Pointer Indexing Version:

#define ARSIZE 10 #define ARSIZE 10

Int ar[ARSIZE]; Int ar[ARSIZE];

Int i=0, sum = 0; Int *p = ar, *q = &ar[10]*;
Int sum = 0;

while (i < ARSIZE)
sum += ar[i++]; while (p < Q)
sum += *p++;
or

while (i < ARSIZE) * C allows 1 past end of array!

sum +=*(ar + i++);
Q CS 61C L4 Structs (3) A Carle, Summer 2005 © UCB

Review: Common C Errors

*There Is a difference between
assignment and equality

ea = b is assignment

ea == Db Is an equality test

*This Is one of the most common errors
for beginning C programmers!

e Precedence Rules
«int **a = {{1, 2}, {3, 4}}
e *a[1]++; []1>7)

ﬂ CS 61C L4 Structs (4) A Carle, Summer 2005 © UCB

Topic Outline

e Strings
e Handles
e Structs

 Heap Allocation Intro

e Linked List Example

ﬂ CS 61C L4 Structs (5) A Carle, Summer 2005 © UCB

C Strings (1/3)

e A string In C is just an array of
characters.

char string[] = "abc';

 How do you tell how long a string is?

e Last character is followed by a O byte
(null terminator)

int strlen(char s[])

1
iInt n = 0;
while (s[n] = 0) n++; /* =\0” */
return n;

ﬂ CS 61C L4 Structs (6) A Carle, Summer 2005 © UCB

C Strings Headaches (2/3)

« One common mistake is to forget to allocate an
extra byte for the null terminator.

 More generally, C requires the programmer to
manage memory manually (unlike Java or C++).

 When creating a long string by concatenating several smaller
strings, the programmer must insure there is enough space to
store the full string!

. \évr))at if you don’t know ahead of time how big your string will
e:
« String constants are immutable:
o char *f ="abc”; f[0]++; [*illegal */
Because section of mem where “abc” lives is immutable.
e charf[]="%"abc”; f[0]++; [*Works! */
Because, in declaration, c copies abc into space allocated for f.

ﬂ CS 61C L4 Structs (7) A Carle, Summer 2005 © UCB

C String Standard Functions (3/3)

o Int strien(char *string);
e compute the length of string

e INt strcmp(char *strl, char *str2);

e return O iIf strl and str2 are identical (how Is
this different from strl == str2?)

char *strcpy(char *dst, char *src);

e copy the contents of string src to the memory
at dst and return dst. The caller must ensure
that dst has enough memory to hold the data to

be copied.

ﬂ CS 61C L4 Structs (8) A Carle, Summer 2005 © UCB

Pointers to pointers (1/4) ...review...

e Sometimes you want to have a
procedure increment a variable?

 \What gets printed?

void AddOne(int Xx) y =5
{ X = X + 1; }
inty = 5;

AddOne(y);
printf(“y = %d\n”’, y);

ﬂ CS 61C L4 Structs (9) A Carle, Summer 2005 © UCB

Pointers to pointers (2/4) ...review...

* Solved by passing in a pointer to our
subroutine.

* Now what gets printed?

void AddOne(int *p) y = 6
1 "P="p+1l; 1}

inty = 5;

AddOne(&y) ;

printf(*y = %d\n”, y);

Q CS 61C L4 Structs (10) A Carle, Summer 2005 © UCB

Pointers to pointers (3/4)

But what if what you want changed is
a pointer?

 \What gets printed?

voild IncrementPtr(int *p) *g = 50

{ p= p+1; } A Q

int A[3] = {50, 60, 70}; 1 1

INt *q = A;

IncrementPtr(q); 50 | 60 | 70

printf(“*q = %d\n”, *q);

ﬂ CS 61C L4 Structs (11) A Carle, Summer 2005 © UCB

Pointers to pointers (4/4)

e Solution! Pass a pointer to a pointer,
called a handle, declared as **h

* Now what gets printed?

voild IncrementPtr(int **h) *g = 60

{ *h=%*nh+1; } AQ (

int A[3] = {50, 60, 70}; 1 1 1

Int *q = A;

IncrementPtr(&q); 50 | 60 | 70

printf(“*q = %d\n”, *q);

Q CS 61C L4 Structs (12) A Carle, Summer 2005 © UCB

C structures . Overview (1/3)

*A structis adata structure
composed of simpler data types.
e Like a class in Java/C++ but without methods or

Inheritance. Don’t get hung up on this
comparison.

struct point {

INt X;

int y;
}>
voild PrintPoint(struct point p)
{

printf(“(%d,%d)”, p-X, p-Y);

ﬂ CS 61C L4 Structs (13) A Carle, Summer 2005 © UCB

C structures: Pointers to them (2/3)

*The C arrow operator (->)

dereferences and extracts a structure
field with a single operator.

 The following are equivalent:

struct point *p;

printf(““x 1s %d\n”, (*p)-x);
printf(““x 1s %d\n”, p->x);

ﬂ CS 61C L4 Structs (14) A Carle, Summer 2005 © UCB

How big are structs? (3/3)

* Recall C operator sizeof () which
gives size in bytes (of type or variable)

e How big Is s1zeof(p)?

struct p {
char X;
int y;
}>

5 bytes? 8 bytes?
Compiler may word align integer y

ﬂ CS 61C L4 Structs (15) A Carle, Summer 2005 © UCB

Dynamic Memory Allocation (1/4)

*C has operator sizeof() which gives
size in bytes (of type or variable)

« Assume size of objects can be
misleading & Is bad style, so use
si1zeof(type)

 Many years ago an int was 16 bits, and
programs assumed it was 2 bytes

ﬂ CS 61C L4 Structs (16) A Carle, Summer 2005 © UCB

Dynamic Memory Allocation (2/4)

To allocate room for some_thinﬁ new to
point to, use mal loc() (with the help of a
typecast and sizeof):

ptr = (int *) malloc (sizeof(int));

 Now, ptr points to a space somewhere in
memory of size (si1zeof(iInt)) in bytes.

e(Int *) simply tells the compiler what will
go into that space (called a typecast).

emal loc is almost never used for 1 var
ptr = (int *) malloc (n*sizeof(int));
ﬂ * This allocates an array of n integers.

CS 61C L4 Structs (17) A Carle, Summer 2005 © UCB

Dynamic Memory Allocation (3/4)

*Once malloc() is called, the memory

location might contain anything, so
don’t use it until you've set its value.

e After dynamically allocating space, we
must dynamically free it.

free(ptr);

e Use this command to clean up.
* OS keeps track of size to free.

Q CS 61C L4 Structs (18) A Carle, Summer 2005 © UCB

Dynamic Memory Allocation (4/4)

 Malloc does not always succeed.
e System could be out of memory

 An error occurred during the memory
request

e Operating system just doesn’t like you
today...

* Always check the pointer you get back
to make sure it is not NULL.
e INnt *p;
if ((p = (int*) malloc(10 * sizeof(int))) == NULL) {
[*do something to recover */

ﬂ CS 61C L4 Structs (19) A Carle, Summer 2005 © UCB

Binky Pointer Video (thanks to NP @ SU)

ﬂ CS 61C L4 Structs (20) A Carle, Summer 2005 © UCB

Linked List Example

e _et’s look at an example of using
structures, pointers, mal_locg)_, and
free() to implement a linked list of

strings.
struct Node {
char *value;
struct Node *next;
}
typedef Node *List;

List ListNew(void)
{ return NULL; }

CS 61C L4 Structs (21) A Carle, Summer 2005 © UCB

Linked List Example

/* add a string to an existing list */
List list add(List list, char *string)
{

struct Node *node =

(struct Node*) malloc(sizeof(struct Node));
node->value =

(char®*) malloc(strlen(string) + 1);
strcpy(node->value, string);
node->next = list;
return node;

ﬂ CS 61C L4 Structs (22)

A Carle, Summer 2005 © UCB

Linked List Example

/* add a string to an existing list */
List list add(List list, char *string)
{

struct Node *node =

(struct Node*) malloc(sizeof(struct Node));
node->value =

(char®*) malloc(strlen(string) + 1);
strcpy(node->value, string);
node->next = list;
return node;

}

list:

node%’ : _-‘——»

string:
‘ I “abC,,
Q CS 61C L4 Structs (23)

NULL

A Carle, Summer 2005 © UCB

Linked List Example

/* add a string to an existing list */
List list add(List list, char *string)

{

struct Node *node

(struct Node*) malloc(sizeof(struct Node));
node->value =

(char®*) malloc(strlen(string) + 1);

strcpy(node->value, string);

node->next = list;

return node;

}

node:

—

?

Q CS 61C L4 Structs (24)

“????17

list:

string:

A

-%—-—»“abc”

A Carle, Summer 2005 © UCB

Linked List Example

/* add a string to an existing list */
List list add(List list, char *string)
{

struct Node *node =

(struct Node*) malloc(sizeof(struct Node));
node->value =

(char®*) malloc(strlen(string) + 1);
strcpy(node->value, string);
node->next = list;
return node;

ks
list:

Poe oA

5 string:

- -%—-—»“abc”

abc
Q CS 61C L4 Structs (25)

A Carle, Summer 2005 © UCB

Linked List Example

/* add a string to an existing list */
List list add(List list, char *string)
{

struct Node *node =

(struct Node*) malloc(sizeof(struct Node));
node->value =

(char®*) malloc(strlen(string) + 1);
strcpy(node->value, string);
node->next = list;
return node;

}

list:

node: A;:::I::::
‘ . y | NULL
T Sstring:

- -%—-—»“abc”

abc
Q CS 61C L4 Structs (26)

A Carle, Summer 2005 © UCB

Linked List Example

/* add a string to an existing list */
List list add(List list, char *string)
{
struct Node *node =
(struct Node*) malloc(sizeof(struct Node));
node->value =
(char®*) malloc(strlen(string) + 1);
strcpy(node->value, string);
node->next = list;
return node;

}

node:
‘ NULL
—
“abc”

Q CS 61C L4 Structs (27) A Carle, Summer 2005 © UCB

“And In Conclusion...”

 Use handles to change pointers
e Create abstractions with structures

 Dynamically allocated heap memory
must be manually deallocated in C.

 Use malloc() and free() to allocate
and deallocate memory from heap.

ﬂ CS 61C L4 Structs (28) A Carle, Summer 2005 © UCB

