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Memory Management (1/2)

• Variable declaration allocates memory
• outside a procedure -> static storage
• inside procedure -> stack

- freed when procedure returns.

• Malloc request
• Pointer: static or stack
• Content: on heap

int myGlobal;
main() {
int myTemp;
int *f=
malloc(16);

}
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Memory Management (2/2)
• A program’s address 
space contains 4 regions:

• stack: local variables, 
grows downward

• heap: space requested for 
pointers via malloc() ; 
resizes dynamically, 
grows upward

• static data: variables 
declared outside main, 
does not grow or shrink

• code: loaded when 
program starts, does not 
change

code

static data

heap

stack

For now, OS somehow
prevents accesses between 
stack and heap (gray hash 
lines). Wait for virtual memory

~ FFFF FFFFhex

~ 0hex
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The Stack (1/4)
• Terminology:

• Stack is composed of frames
• A frame corresponds to one 
procedure invocation

• Stack frame includes:
- Return address of caller
- Space for other local variables

• When procedure ends, stack 
frame is tossed off the stack; 
frees memory for future stack 
frames frame

frame

frame

frame

$SP
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The Stack (2/4)
• Implementation:

• By convention, stack grows down 
in memory.

• Stack pointer ($SP) points to next 
available address

• PUSH: On invocation, callee moves 
$SP down to create new frame to 
hold callee’s local variables and RA

- (old SP – new SP) size of frame 
• POP: On return, callee moves $SP 
back to original, returns to caller frame

frame

frame

frame

$SP
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The Stack (3/4)

• Last In, First Out (LIFO) memory usage
main ()
{ a(0); 
}

void a (int m)
{ b(1); 
}
void b (int n)
{ c(2); 
}
void c (int o)
{ d(3); 
}
void d (int p)
{ 
}

stack

Stack Pointer

Stack Pointer

Stack Pointer

Stack Pointer

Stack Pointer
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• Pointers in C allow access to deallocated
memory, leading to hard-to-find bugs !
int *ptr () {

int y;
y = 3;
return &y;

}

main () {
int *stackAddr; 
stackAddr = ptr();
printf("%d", *stackAddr); /* 3 */

printf("%d", *stackAddr); /* XXX */

}

The Stack (4/4): Dangling Pointers

main

ptr()
(y==3)

SP

main
SP main

printf()
(y==?)

SP
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Static and Code Segments

• Code (Text Segment)
• Holds instructions to be executed
• Constant size

• Static Segment
• Holds global variables whose addresses 
are known at compile time

- Compare to the heap (malloc calls) where 
address isn’t known
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The Heap (Dynamic memory)
• Large pool of memory, 
not allocated in contiguous order

• back-to-back requests for heap memory 
could return blocks very far apart

• where Java new command allocates memory

• In C, specify number of bytes of memory 
explicitly to allocate item

int *ptr;
ptr = (int *) malloc(4);
/* malloc returns type (void *),
so need to cast to right type */

•malloc(): Allocates raw, uninitialized
memory from heap
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Memory Management

• How do we manage memory?
• Code, Static storage are easy: 
they never grow or shrink

• Stack space is also easy: 
stack frames are created and 
destroyed in last-in, first-out (LIFO) 
order

• Managing the heap is tricky:
memory can be allocated / deallocated
at any time
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Heap Management Requirements

• Want malloc() and free() to run 
quickly.

• Want minimal memory overhead
• Want to avoid fragmentation –
when most of our free memory is in 
many small chunks

• In this case, we might have many free 
bytes but not be able to satisfy a large 
request since the free bytes are not 
contiguous in memory.

CS 61C L05 Memory Management (12) A Carle, Summer 2005 © UCB

Heap Management

• An example
• Request R1 for 100 
bytes

• Request R2 for 1 byte
• Memory from R1 is 
freed

• Request R3 for 50 
bytes

R2 (1 byte)

R1 (100 bytes)
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Heap Management

• An example
• Request R1 for 100 
bytes

• Request R2 for 1 byte
• Memory from R1 is 
freed

• Request R3 for 50 
bytes

R2 (1 byte)

R3?

R3?
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K&R Malloc/Free Implementation

• From Section 8.7 of K&R
• Code in the book uses some C language 
features we haven’t discussed and is 
written in a very terse style, don’t worry if 
you can’t decipher the code

• Each block of memory is preceded by 
a header that has two fields: 
size of the block and 
a pointer to the next block

• All free blocks are kept in a linked list, 
the pointer field is unused in an 
allocated block
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K&R Implementation

•malloc() searches the free list for a 
block that is big enough.  If none is 
found, more memory is requested from 
the operating system.

•free() checks if the blocks adjacent to 
the freed block are also free

• If so, adjacent free blocks are merged 
(coalesced) into a single, larger free block

• Otherwise, the freed block is just added to 
the free list
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Choosing a block in malloc()

• If there are multiple free blocks of 
memory that are big enough for some 
request, how do we choose which one 
to use?

• best-fit: choose the smallest block that is 
big enough for the request

• first-fit: choose the first block we see 
that is big enough

• next-fit: like first-fit but remember where 
we finished searching and resume 
searching from there
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PRS Round 1

•A con of first-fit is that it results in many small 
blocks at the beginning of the free list

•A con of next-fit is it is slower than first-fit, since it 
takes longer in steady state to find a match

•A con of best-fit is that it leaves lots of tiny blocks
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Tradeoffs of allocation policies

• Best-fit: Tries to limit fragmentation 
but at the cost of time (must examine 
all free blocks for each malloc). 
Leaves lots of small blocks (why?)

• First-fit: Quicker than best-fit (why?) 
but potentially more fragmentation.  
Tends to concentrate small blocks at 
the beginning of the free list (why?)

• Next-fit: Does not concentrate small 
blocks at front like first-fit, should be 
faster as a result.
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Administrivia

• HW2 Due Wednesday
• HW3 Out Today, Due Sunday
• Proj1 Coming Soon

• If you still aren’t enrolled in the 
course, you may need to talk to 
Barbara Hightower to get things 
straightened out.  You will almost 
certainly need to move to section 103.
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Slab Allocator

• A different approach to memory 
management (used in GNU libc)

• Divide blocks in to “large” and “small” 
by picking an arbitrary threshold size.  
Blocks larger than this threshold are 
managed with a freelist (as before).

• For small blocks, allocate blocks in 
sizes that are powers of 2

• e.g., if program wants to allocate 20 
bytes, actually give it 32 bytes
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Slab Allocator

• Bookkeeping for small blocks is 
relatively easy: just use a bitmap for 
each range of blocks of the same size

• Allocating is easy and fast: compute 
the size of the block to allocate and 
find a free bit in the corresponding 
bitmap.

• Freeing is also easy and fast: figure 
out which slab the address belongs to 
and clear the corresponding bit.
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Slab Allocator

16 byte blocks:

32 byte blocks:

64 byte blocks:

16 byte block bitmap:  11011000

32 byte block bitmap:   0111

64 byte block bitmap:   00
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Slab Allocator Tradeoffs

• Extremely fast for small blocks.
• Slower for large blocks

• But presumably the program will take 
more time to do something with a large 
block so the overhead is not as critical.

• Minimal space overhead
• No fragmentation (as we defined it 
before) for small blocks, but still have 
wasted space!
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Internal vs. External Fragmentation

• With the slab allocator, difference 
between requested size and next 
power of 2 is wasted

• e.g., if program wants to allocate 20 
bytes and we give it a 32 byte block, 12 
bytes are unused.

• We also refer to this as fragmentation, 
but call it internal fragmentation since 
the wasted space is actually within an 
allocated block.

• External fragmentation: wasted space 
between allocated blocks.
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Buddy System

• Yet another memory management 
technique (used in Linux kernel)

• Like GNU’s “slab allocator”, but only 
allocate blocks in sizes that are 
powers of 2 (internal fragmentation is 
possible)

• Keep separate free lists for each size
• e.g., separate free lists for 16 byte, 32 
byte, 64 byte blocks, etc.
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Buddy System
• If no free block of size n is available, find a 
block of size 2n and split it in to two 
blocks of size n

• When a block of size n is freed, if its 
neighbor of size n is also free, coalesce 
the blocks in to a single block of size 2n

• Buddy is block in other half larger block 

• Same speed advantages as slab allocator

buddies NOT buddies
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Allocation Schemes

•So which memory management 
scheme (K&R, slab, buddy) is 
best?

•There is no single best approach for 
every application.

•Different applications have different 
allocation / deallocation patterns.  

•A scheme that works well for one 
application may work poorly for 
another application.
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Automatic Memory Management

• Dynamically allocated memory is 
difficult to track – why not track it 
automatically?

• If we can keep track of what memory is 
in use, we can reclaim everything else.

• Unreachable memory is called garbage, 
the process of reclaiming it is called 
garbage collection.

• So how do we track what is in use?
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Tracking Memory Usage

• Techniques depend heavily on the 
programming language and rely on 
help from the compiler.

• Start with all pointers in global 
variables and local variables (root set).

• Recursively examine dynamically 
allocated objects we see a pointer to.

• We can do this in constant space by 
reversing the pointers on the way down

• How do we recursively find pointers in 
dynamically allocated memory?
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Tracking Memory Usage
• Again, it depends heavily on the 
programming language and compiler.

• Could have only a single type of 
dynamically allocated object in memory

• E.g., simple Lisp/Scheme system with only 
cons cells (61A’s Scheme not “simple”)

• Could use a strongly typed language 
(e.g., Java)

• Don’t allow conversion (casting) between 
arbitrary types.

• C/C++ are not strongly typed.

• Here are 3 schemes to collect garbage
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Scheme 1: Reference Counting

• For every chunk of dynamically 
allocated memory, keep a count of 
number of pointers that point to it.

• When the count reaches 0, reclaim.
• Simple assignment statements can 
result in a lot of work, since may 
update reference counts of many 
items
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Reference Counting Example

• For every chunk of dynamically 
allocated memory, keep a count of 
number of pointers that point to it.

• When the count reaches 0, reclaim.
int *p1, *p2;
p1 = malloc(sizeof(int));
p2 = malloc(sizeof(int));
*p1 = 10; *p2 = 20; 

p1

p2

1020Reference 
count = 1

Reference 
count = 1
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Reference Counting Example

• For every chunk of dynamically 
allocated memory, keep a count of 
number of pointers that point to it.

• When the count reaches 0, reclaim.
int *p1, *p2;
p1 = malloc(sizeof(int));
p2 = malloc(sizeof(int));
*p1 = 10; *p2 = 20; 
p1 = p2;

p1

p2

1020Reference 
count = 2

Reference 
count = 0
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Reference Counting (p1, p2 are pointers)

p1 = p2;

• Increment reference count for p2
• If p1 held a valid value, decrement its 
reference count

• If the reference count for p1 is now 0, 
reclaim the storage it points to.

• If the storage pointed to by p1 held other 
pointers, decrement all of their reference 
counts, and so on…

• Must also decrement reference count 
when local variables cease to exist.
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Reference Counting Flaws

• Extra overhead added to assignments, 
as well as ending a block of code.

• Does not work for circular structures!
• E.g., doubly linked list:

X Y Z
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Scheme 2: Mark and Sweep Garbage Col.

• Keep allocating new memory until 
memory is exhausted, then try to find 
unused memory.

• Consider objects in heap a graph, chunks 
of memory (objects) are graph nodes, 
pointers to memory are graph edges.

• Edge from A to B => A stores pointer to B

• Can start with the root set, perform a 
graph traversal, find all usable memory!

• 2 Phases: (1) Mark used nodes;(2) Sweep 
free ones, returning list of free nodes
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Mark and Sweep

• Graph traversal is relatively easy to 
implement recursively

°But with recursion, state is stored on 
the execution stack.

° Garbage collection is invoked when not 
much memory left

°As before, we could traverse in 
constant space (by reversing pointers)

void traverse(struct graph_node *node) {
/* visit this node */
foreach child in node->children {

traverse(child);
}

}
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Scheme 3: Copying Garbage Collection

• Divide memory into two spaces, only 
one in use at any time.

• When active space is exhausted, 
traverse the active space, copying all 
objects to the other space, then make 
the new space active and continue.

• Only reachable objects are copied!

• Use “forwarding pointers” to keep 
consistency

• Simple solution to avoiding having to have a 
table of old and new addresses, and to mark 
objects already copied (see bonus slides)
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PRS Round 2

A. Of {K&R, Slab, Buddy}, there is no 
best (it depends on the problem).

B. Since automatic garbage collection 
can occur any time, it is more 
difficult to measure the execution 
time of a Java program vs. a C 
program.

C. We don’t have automatic garbage 
collection in C because of efficiency.
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Summary (1/2)
• C has 3 pools of memory

• Static storage: global variable storage, 
basically permanent, entire program run

• The Stack: local variable storage, 
parameters, return address

• The Heap (dynamic storage): malloc() 
grabs space from here, free() returns it. 

•malloc() handles free space with 
freelist. Three different ways to find free 
space when given a request:

• First fit (find first one that’s free)
• Next fit (same as first, but remembers 
where left off)

• Best fit (finds most “snug” free space)
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Summary (2/2)
• Several techniques for managing heap w/ 
malloc/free: best-, first-, next-fit, slab,buddy

• 2 types of memory fragmentation: internal & 
external; all suffer from some kind of frag.

• Each technique has strengths and 
weaknesses, none is definitively best

• Automatic memory management relieves 
programmer from managing memory.

• All require help from language and compiler
• Reference Count: not for circular structures
• Mark and Sweep: complicated and slow, works
• Copying: move active objects back and forth


