
CS 61C L05 Memory Management (1) A Carle, Summer 2005 © UCB

inst.eecs.berkeley.edu/~cs61c/su05
CS61C : Machine Structures

Lecture #5: Memory Management

2005-06-27
Andy Carle

CS 61C L05 Memory Management (2) A Carle, Summer 2005 © UCB

Memory Management (1/2)

• Variable declaration allocates memory
• outside a procedure -> static storage
• inside procedure -> stack

- freed when procedure returns.

• Malloc request
• Pointer: static or stack
• Content: on heap

int myGlobal;
main() {
int myTemp;
int *f=
malloc(16);

}

CS 61C L05 Memory Management (3) A Carle, Summer 2005 © UCB

Memory Management (2/2)
• A program’s address
space contains 4 regions:

• stack: local variables,
grows downward

• heap: space requested for
pointers via malloc() ;
resizes dynamically,
grows upward

• static data: variables
declared outside main,
does not grow or shrink

• code: loaded when
program starts, does not
change

code

static data

heap

stack

For now, OS somehow
prevents accesses between
stack and heap (gray hash
lines). Wait for virtual memory

~ FFFF FFFFhex

~ 0hex

CS 61C L05 Memory Management (4) A Carle, Summer 2005 © UCB

The Stack (1/4)
• Terminology:

• Stack is composed of frames
• A frame corresponds to one
procedure invocation

• Stack frame includes:
- Return address of caller
- Space for other local variables

• When procedure ends, stack
frame is tossed off the stack;
frees memory for future stack
frames frame

frame

frame

frame

$SP

CS 61C L05 Memory Management (5) A Carle, Summer 2005 © UCB

The Stack (2/4)
• Implementation:

• By convention, stack grows down
in memory.

• Stack pointer ($SP) points to next
available address

• PUSH: On invocation, callee moves
$SP down to create new frame to
hold callee’s local variables and RA

- (old SP – new SP) size of frame
• POP: On return, callee moves $SP
back to original, returns to caller frame

frame

frame

frame

$SP

CS 61C L05 Memory Management (6) A Carle, Summer 2005 © UCB

The Stack (3/4)

• Last In, First Out (LIFO) memory usage
main ()
{ a(0);
}

void a (int m)
{ b(1);
}
void b (int n)
{ c(2);
}
void c (int o)
{ d(3);
}
void d (int p)
{
}

stack

Stack Pointer

Stack Pointer

Stack Pointer

Stack Pointer

Stack Pointer

CS 61C L05 Memory Management (7) A Carle, Summer 2005 © UCB

• Pointers in C allow access to deallocated
memory, leading to hard-to-find bugs !
int *ptr () {

int y;
y = 3;
return &y;

}

main () {
int *stackAddr;
stackAddr = ptr();
printf("%d", *stackAddr); /* 3 */

printf("%d", *stackAddr); /* XXX */

}

The Stack (4/4): Dangling Pointers

main

ptr()
(y==3)

SP

main
SP main

printf()
(y==?)

SP

CS 61C L05 Memory Management (8) A Carle, Summer 2005 © UCB

Static and Code Segments

• Code (Text Segment)
• Holds instructions to be executed
• Constant size

• Static Segment
• Holds global variables whose addresses
are known at compile time

- Compare to the heap (malloc calls) where
address isn’t known

CS 61C L05 Memory Management (9) A Carle, Summer 2005 © UCB

The Heap (Dynamic memory)
• Large pool of memory,
not allocated in contiguous order

• back-to-back requests for heap memory
could return blocks very far apart

• where Java new command allocates memory

• In C, specify number of bytes of memory
explicitly to allocate item

int *ptr;
ptr = (int *) malloc(4);
/* malloc returns type (void *),
so need to cast to right type */

•malloc(): Allocates raw, uninitialized
memory from heap

CS 61C L05 Memory Management (10) A Carle, Summer 2005 © UCB

Memory Management

• How do we manage memory?
• Code, Static storage are easy:
they never grow or shrink

• Stack space is also easy:
stack frames are created and
destroyed in last-in, first-out (LIFO)
order

• Managing the heap is tricky:
memory can be allocated / deallocated
at any time

CS 61C L05 Memory Management (11) A Carle, Summer 2005 © UCB

Heap Management Requirements

• Want malloc() and free() to run
quickly.

• Want minimal memory overhead
• Want to avoid fragmentation –
when most of our free memory is in
many small chunks

• In this case, we might have many free
bytes but not be able to satisfy a large
request since the free bytes are not
contiguous in memory.

CS 61C L05 Memory Management (12) A Carle, Summer 2005 © UCB

Heap Management

• An example
• Request R1 for 100
bytes

• Request R2 for 1 byte
• Memory from R1 is
freed

• Request R3 for 50
bytes

R2 (1 byte)

R1 (100 bytes)

CS 61C L05 Memory Management (13) A Carle, Summer 2005 © UCB

Heap Management

• An example
• Request R1 for 100
bytes

• Request R2 for 1 byte
• Memory from R1 is
freed

• Request R3 for 50
bytes

R2 (1 byte)

R3?

R3?

CS 61C L05 Memory Management (14) A Carle, Summer 2005 © UCB

K&R Malloc/Free Implementation

• From Section 8.7 of K&R
• Code in the book uses some C language
features we haven’t discussed and is
written in a very terse style, don’t worry if
you can’t decipher the code

• Each block of memory is preceded by
a header that has two fields:
size of the block and
a pointer to the next block

• All free blocks are kept in a linked list,
the pointer field is unused in an
allocated block

CS 61C L05 Memory Management (15) A Carle, Summer 2005 © UCB

K&R Implementation

•malloc() searches the free list for a
block that is big enough. If none is
found, more memory is requested from
the operating system.

•free() checks if the blocks adjacent to
the freed block are also free

• If so, adjacent free blocks are merged
(coalesced) into a single, larger free block

• Otherwise, the freed block is just added to
the free list

CS 61C L05 Memory Management (16) A Carle, Summer 2005 © UCB

Choosing a block in malloc()

• If there are multiple free blocks of
memory that are big enough for some
request, how do we choose which one
to use?

• best-fit: choose the smallest block that is
big enough for the request

• first-fit: choose the first block we see
that is big enough

• next-fit: like first-fit but remember where
we finished searching and resume
searching from there

CS 61C L05 Memory Management (17) A Carle, Summer 2005 © UCB

PRS Round 1

•A con of first-fit is that it results in many small
blocks at the beginning of the free list

•A con of next-fit is it is slower than first-fit, since it
takes longer in steady state to find a match

•A con of best-fit is that it leaves lots of tiny blocks

CS 61C L05 Memory Management (18) A Carle, Summer 2005 © UCB

Tradeoffs of allocation policies

• Best-fit: Tries to limit fragmentation
but at the cost of time (must examine
all free blocks for each malloc).
Leaves lots of small blocks (why?)

• First-fit: Quicker than best-fit (why?)
but potentially more fragmentation.
Tends to concentrate small blocks at
the beginning of the free list (why?)

• Next-fit: Does not concentrate small
blocks at front like first-fit, should be
faster as a result.

CS 61C L05 Memory Management (19) A Carle, Summer 2005 © UCB

Administrivia

• HW2 Due Wednesday
• HW3 Out Today, Due Sunday
• Proj1 Coming Soon

• If you still aren’t enrolled in the
course, you may need to talk to
Barbara Hightower to get things
straightened out. You will almost
certainly need to move to section 103.

CS 61C L05 Memory Management (20) A Carle, Summer 2005 © UCB

Slab Allocator

• A different approach to memory
management (used in GNU libc)

• Divide blocks in to “large” and “small”
by picking an arbitrary threshold size.
Blocks larger than this threshold are
managed with a freelist (as before).

• For small blocks, allocate blocks in
sizes that are powers of 2

• e.g., if program wants to allocate 20
bytes, actually give it 32 bytes

CS 61C L05 Memory Management (21) A Carle, Summer 2005 © UCB

Slab Allocator

• Bookkeeping for small blocks is
relatively easy: just use a bitmap for
each range of blocks of the same size

• Allocating is easy and fast: compute
the size of the block to allocate and
find a free bit in the corresponding
bitmap.

• Freeing is also easy and fast: figure
out which slab the address belongs to
and clear the corresponding bit.

CS 61C L05 Memory Management (22) A Carle, Summer 2005 © UCB

Slab Allocator

16 byte blocks:

32 byte blocks:

64 byte blocks:

16 byte block bitmap: 11011000

32 byte block bitmap: 0111

64 byte block bitmap: 00

CS 61C L05 Memory Management (23) A Carle, Summer 2005 © UCB

Slab Allocator Tradeoffs

• Extremely fast for small blocks.
• Slower for large blocks

• But presumably the program will take
more time to do something with a large
block so the overhead is not as critical.

• Minimal space overhead
• No fragmentation (as we defined it
before) for small blocks, but still have
wasted space!

CS 61C L05 Memory Management (24) A Carle, Summer 2005 © UCB

Internal vs. External Fragmentation

• With the slab allocator, difference
between requested size and next
power of 2 is wasted

• e.g., if program wants to allocate 20
bytes and we give it a 32 byte block, 12
bytes are unused.

• We also refer to this as fragmentation,
but call it internal fragmentation since
the wasted space is actually within an
allocated block.

• External fragmentation: wasted space
between allocated blocks.

CS 61C L05 Memory Management (25) A Carle, Summer 2005 © UCB

Buddy System

• Yet another memory management
technique (used in Linux kernel)

• Like GNU’s “slab allocator”, but only
allocate blocks in sizes that are
powers of 2 (internal fragmentation is
possible)

• Keep separate free lists for each size
• e.g., separate free lists for 16 byte, 32
byte, 64 byte blocks, etc.

CS 61C L05 Memory Management (26) A Carle, Summer 2005 © UCB

Buddy System
• If no free block of size n is available, find a
block of size 2n and split it in to two
blocks of size n

• When a block of size n is freed, if its
neighbor of size n is also free, coalesce
the blocks in to a single block of size 2n

• Buddy is block in other half larger block

• Same speed advantages as slab allocator

buddies NOT buddies

CS 61C L05 Memory Management (27) A Carle, Summer 2005 © UCB

Allocation Schemes

•So which memory management
scheme (K&R, slab, buddy) is
best?

•There is no single best approach for
every application.

•Different applications have different
allocation / deallocation patterns.

•A scheme that works well for one
application may work poorly for
another application.

CS 61C L05 Memory Management (28) A Carle, Summer 2005 © UCB

Automatic Memory Management

• Dynamically allocated memory is
difficult to track – why not track it
automatically?

• If we can keep track of what memory is
in use, we can reclaim everything else.

• Unreachable memory is called garbage,
the process of reclaiming it is called
garbage collection.

• So how do we track what is in use?

CS 61C L05 Memory Management (29) A Carle, Summer 2005 © UCB

Tracking Memory Usage

• Techniques depend heavily on the
programming language and rely on
help from the compiler.

• Start with all pointers in global
variables and local variables (root set).

• Recursively examine dynamically
allocated objects we see a pointer to.

• We can do this in constant space by
reversing the pointers on the way down

• How do we recursively find pointers in
dynamically allocated memory?

CS 61C L05 Memory Management (30) A Carle, Summer 2005 © UCB

Tracking Memory Usage
• Again, it depends heavily on the
programming language and compiler.

• Could have only a single type of
dynamically allocated object in memory

• E.g., simple Lisp/Scheme system with only
cons cells (61A’s Scheme not “simple”)

• Could use a strongly typed language
(e.g., Java)

• Don’t allow conversion (casting) between
arbitrary types.

• C/C++ are not strongly typed.

• Here are 3 schemes to collect garbage

CS 61C L05 Memory Management (31) A Carle, Summer 2005 © UCB

Scheme 1: Reference Counting

• For every chunk of dynamically
allocated memory, keep a count of
number of pointers that point to it.

• When the count reaches 0, reclaim.
• Simple assignment statements can
result in a lot of work, since may
update reference counts of many
items

CS 61C L05 Memory Management (32) A Carle, Summer 2005 © UCB

Reference Counting Example

• For every chunk of dynamically
allocated memory, keep a count of
number of pointers that point to it.

• When the count reaches 0, reclaim.
int *p1, *p2;
p1 = malloc(sizeof(int));
p2 = malloc(sizeof(int));
*p1 = 10; *p2 = 20;

p1

p2

1020Reference
count = 1

Reference
count = 1

CS 61C L05 Memory Management (33) A Carle, Summer 2005 © UCB

Reference Counting Example

• For every chunk of dynamically
allocated memory, keep a count of
number of pointers that point to it.

• When the count reaches 0, reclaim.
int *p1, *p2;
p1 = malloc(sizeof(int));
p2 = malloc(sizeof(int));
*p1 = 10; *p2 = 20;
p1 = p2;

p1

p2

1020Reference
count = 2

Reference
count = 0

CS 61C L05 Memory Management (34) A Carle, Summer 2005 © UCB

Reference Counting (p1, p2 are pointers)

p1 = p2;

• Increment reference count for p2
• If p1 held a valid value, decrement its
reference count

• If the reference count for p1 is now 0,
reclaim the storage it points to.

• If the storage pointed to by p1 held other
pointers, decrement all of their reference
counts, and so on…

• Must also decrement reference count
when local variables cease to exist.

CS 61C L05 Memory Management (35) A Carle, Summer 2005 © UCB

Reference Counting Flaws

• Extra overhead added to assignments,
as well as ending a block of code.

• Does not work for circular structures!
• E.g., doubly linked list:

X Y Z

CS 61C L05 Memory Management (36) A Carle, Summer 2005 © UCB

Scheme 2: Mark and Sweep Garbage Col.

• Keep allocating new memory until
memory is exhausted, then try to find
unused memory.

• Consider objects in heap a graph, chunks
of memory (objects) are graph nodes,
pointers to memory are graph edges.

• Edge from A to B => A stores pointer to B

• Can start with the root set, perform a
graph traversal, find all usable memory!

• 2 Phases: (1) Mark used nodes;(2) Sweep
free ones, returning list of free nodes

CS 61C L05 Memory Management (37) A Carle, Summer 2005 © UCB

Mark and Sweep

• Graph traversal is relatively easy to
implement recursively

°But with recursion, state is stored on
the execution stack.

° Garbage collection is invoked when not
much memory left

°As before, we could traverse in
constant space (by reversing pointers)

void traverse(struct graph_node *node) {
/* visit this node */
foreach child in node->children {

traverse(child);
}

}

CS 61C L05 Memory Management (38) A Carle, Summer 2005 © UCB

Scheme 3: Copying Garbage Collection

• Divide memory into two spaces, only
one in use at any time.

• When active space is exhausted,
traverse the active space, copying all
objects to the other space, then make
the new space active and continue.

• Only reachable objects are copied!

• Use “forwarding pointers” to keep
consistency

• Simple solution to avoiding having to have a
table of old and new addresses, and to mark
objects already copied (see bonus slides)

CS 61C L05 Memory Management (39) A Carle, Summer 2005 © UCB

PRS Round 2

A. Of {K&R, Slab, Buddy}, there is no
best (it depends on the problem).

B. Since automatic garbage collection
can occur any time, it is more
difficult to measure the execution
time of a Java program vs. a C
program.

C. We don’t have automatic garbage
collection in C because of efficiency.

CS 61C L05 Memory Management (40) A Carle, Summer 2005 © UCB

Summary (1/2)
• C has 3 pools of memory

• Static storage: global variable storage,
basically permanent, entire program run

• The Stack: local variable storage,
parameters, return address

• The Heap (dynamic storage): malloc()
grabs space from here, free() returns it.

•malloc() handles free space with
freelist. Three different ways to find free
space when given a request:

• First fit (find first one that’s free)
• Next fit (same as first, but remembers
where left off)

• Best fit (finds most “snug” free space)

CS 61C L05 Memory Management (41) A Carle, Summer 2005 © UCB

Summary (2/2)
• Several techniques for managing heap w/
malloc/free: best-, first-, next-fit, slab,buddy

• 2 types of memory fragmentation: internal &
external; all suffer from some kind of frag.

• Each technique has strengths and
weaknesses, none is definitively best

• Automatic memory management relieves
programmer from managing memory.

• All require help from language and compiler
• Reference Count: not for circular structures
• Mark and Sweep: complicated and slow, works
• Copying: move active objects back and forth

