Inst.eecs.berkeley.edu/~cs61c/su05

CS61C : Machine Structures

Lecture #5. Memory Management

2005-06-27
ﬂ Andy Carle
CS 61C L0O5 Memory Management (1) A Carle, Summer 2005 © UCB

Memory Management (1/2)

e Variable declaration allocates memory
eQuUtsIde a procedure -> static storage

*inside procedure -> stack
- freed when procedure returns.

 Malloc request int myGlobal;
e Pointer: static or stack main() {

e Content: on heap Int myTemp;
Int *f=
malloc(16);
}

ﬂ CS 61C L0O5 Memory Management (2) A Carle, Summer 2005 © UCB

Memory Management (2/2)

~ FFFF FFFF,

A program’s address
space contains 4 regions:

e stack: local variables,
grows downward

*heap: space requested for

pointers viamalloc() ;
resizes dynamically, heap
grows upward static data
e Static data: variables
declared outside main, code
does not grow or shrink -o_
«code’ loaded when For now, OS somehow

tarts. d i prevents accesses between
program starts, does no stack and heap (gray hash
ﬂ Change lines). Wait for virtual memory

CS 61C L0O5 Memory Management (3) A Carle, Summer 2005 © UCB

The Stack (1/4)

 Terminology:
e Stack Is composed of frames

* A frame corresponds to one
procedure invocation

e Stack frame includes:
- Return address of caller
- Space for other local variables

When procedure ends, stack
frame Is tossed off the stack;
frees memory for future stack
frames

$SP -+
ﬂ CS 61C L0O5 Memory Management (4) A Carle, Summer 2005 © UCB

The Stack (2/4)

 Implementation:

By convention, stack grows down
In memory.

e Stack pointer ($SP) points to next
available address

e PUSH: On invocation, callee moves
$SP down to create new frame to
hold callee’s local variables and RA

- (old SP — new SP) = size of frame

 POP: On return, callee moves $SP
back to original, returns to caller

$SP ~»

ﬂ CS 61C L0O5 Memory Management (5) A Carle, Summer 2005 © UCB

The Stack (3/4)

e Last In, First Out (LIFO) memory usage

stack

main

{ a(0);

void a (int m)
{ b(1);

:}void b (int n)

{ c(@);
}

void d (int p)
{

¥ Stack Pointer —»

ﬂ CS 61C L0O5 Memory Management (6) A Carle, Summer 2005 © UCB

The Stack (4/4): Dangling Pointers

* Pointers in C allow access to deallocated
memory, leading to hard-to-find bugs !

int *ptr O {
S

int y;
y = 3;
return &y;
Sk

¥

_ SR>
main () {
Int *stackAddr;
stackAddr = ptr();
printf("'%d", *stackAddr);

printf("%d", *stackAddr);

Q CS 61C L0O5 Memory Management (7) A Carle, Summer 2005 © UCB

Static and Code Segments

* Code (Text Segment)
e Holds Instructions to be executed
e Constant size

e Static Segment

* Holds global variables whose addresses
are known at compile time

- Compare to the heap (malloc calls) where
address isn’t known

ﬂ CS 61C L0O5 Memory Management (8) A Carle, Summer 2005 © UCB

The Heap (Dynamic memory)

*Large pool of memory,
not allocated in contiguous order

* back-to-back requests for heap memory
could return blocks very far apart

where Java new command allocates memory

*In C, specify number of bytes of memory

explicitly to allocate item
int *ptr;

ptr = (int *) malloc(4);

emalloc(): Allocates raw, uninitialized
memory from heap

CS 61C L0O5 Memory Management (9) A Carle, Summer 2005 © UCB

Memory Management

How do we manage memory?

* Code, Static storage are easy:
they never grow or shrink

e Stack space is also easy:
stack frames are created and
dec?troyed In last-in, first-out (LIFO)
order

e Managing the healo IS tricky:
0

memory can be allocated / deallocated
at any time

Q CS 61C L0O5 Memory Management (10) A Carle, Summer 2005 © UCB

Heap Management Requirements

 Want malloc() and free() to run
quickly.

 Want minimal memory overhead

Want to avoid fragmentation —
when most of our free memory is In
many small chunks

 In this case, we might have many free
bytes but not be able to satisfy a large
request since the free bytes are not
contiguous in memory.

ﬂ CS 61C L0O5 Memory Management (11) A Carle, Summer 2005 © UCB

Heap Management

 An example

 Request R1 for 100
oytes

 Request R2 for 1 byte

e Memory from R1is R2(lbyte
freed

 Request R3 for 50
bytes

Q CS 61C L0O5 Memory Management (12) A Carle, Summer 2005 © UCB

Heap Management

 An example

 Request R1 for 100
oytes

 Request R2 for 1 byte

e Memory from R1lis Rz2(1 byte)\
freed

 Request R3 for 50
bytes

Q CS 61C L0O5 Memory Management (13) A Carle, Summer 2005 © UCB

K&R Malloc/Free Implementation

eFrom Section 8.7 of K&R

 Code in the book uses some C language
features we haven’t discussed and is
written in a very terse style, don’t worry if
you can’t decipher the code

 Each block of memory is preceded by
a header that has two fields:
size of the block and
a pointer to the next block

e All free blocks are kept in a linked list,
the pointer field Is unused In an

2 ,allocated block
CS 61C L0O5 Memory Management (14) A Carle, Summer 2005 © UCB

K&R Implementation

mal loc() searches the free list for a

block that is big enough. If none is
found, more memory Is requested from
the operating system.

 free() checks if the blocks adjacent to
the freed block are also free

e If so, adjacent free blocks are merged
(coalesced) into a single, larger free block

e Otherwise, the freed block is just added to
the free list

ﬂ CS 61C L0O5 Memory Management (15) A Carle, Summer 2005 © UCB

Choosing a block in malloc()

o If there are multiple free blocks of
memory that are big enough for some
request, how do we choose which one
to use?

e pest-fit: choose the smallest block that iIs
big enough for the request

e first-fit: choose the first block we see
that is big enough

e next-fit: like first-fit but remember where
we finished searching and resume
searching from there

ﬂ CS 61C L0O5 Memory Management (16) A Carle, Summer 2005 © UCB

PRS Round 1

*A con of first-fit is that it results in many small
blocks at the beginning of the free list

*A con of next-fitis it is slower than first-fit, since it
takes longer in steady state to find a match

*A con of best-fit is that it leaves lots of tiny blocks

Q CS 61C L0O5 Memory Management (17) A Carle, Summer 2005 © UCB

Tradeoffs of allocation policies

e Best-fit: Tries to limit fragmentation
but at the cost of time (must examine
all free blocks for each malloc%.
Leaves lots of small blocks (why?)

* First-fit: Quicker than best-fit (why?)
but potentially more fragmentation.
Tends to concentrate small blocks at
the beginning of the free list (why?)

* Next-fit: Does not concentrate small
blocks at front like first-fit, should be
faster as a result.

ﬂ CS 61C L0O5 Memory Management (18) A Carle, Summer 2005 © UCB

Administrivia

e HW2 Due Wednesday
« HW3 Out Today, Due Sunday

*Projl Coming Soon

o If you still aren’t enrolled in the
course, you may need to talk to
Barbara Hightower to get things
straightened out. You will almost
certainly need to move to section 103.

ﬂ CS 61C L0O5 Memory Management (19) A Carle, Summer 2005 © UCB

Slab Allocator

A different aPproach to memory
management (used in GNU 11bc)

*Divide blocks in to “large” and “small”
by picking an arbitrary threshold size.
Blocks larger than this threshold are
managed with a freelist (as before).

* For small blocks, allocate blocks In
sizes that are powers of 2

ee.g., If program wants to allocate 20
bytes, actually give it 32 bytes

ﬂ CS 61C L0O5 Memory Management (20) A Carle, Summer 2005 © UCB

Slab Allocator

Bookkeeping for small blocks is
relatively eas%/: lust use a bitmap for
each range of blocks of the same size

e Allocating is easy and fast: compute
the size of the block to allocate and
find a free bit in the corresponding
bitmap.

*Freeing is also easy and fast: figure
out which slab the address belongs to
and clear the corresponding bit.

ﬂ CS 61C L0O5 Memory Management (21) A Carle, Summer 2005 © UCB

Slab Allocator

16 byte blocks: -

3 Dyt ook

64 byte blocks:

16 byte block bitmap: 11011000
32 byte block bitmap: 0111

64 byte block bitmap: 00

Q CS 61C L0O5 Memory Management (22) A Carle, Summer 2005 © UCB

Slab Allocator Tradeoffs

* Extremely fast for small blocks.

e Slower for large blocks

e But presumably the program will take
more time to do something with a large
block so the overhead is not as critical.

 Minimal space overhead

*No fragmentation ﬁas we defined It
before) for small blocks, but still have
wasted space!

ﬂ CS 61C L0O5 Memory Management (23) A Carle, Summer 2005 © UCB

Internal vs. External Fragmentation

* With the slab allocator, difference
between requested size and next
power of 2 is wasted

ee.g., If program wants to allocate 20
bytes and we give it a 32 byte block, 12
bytes are unused.

*\We also refer to this as fragmentation,
but call it internal fragmentation since
the wasted space is actually within an
allocated block.

« External fragmentation: wasted space
2 ?between allocated blocks.

CS 61C L0O5 Memory Management (24) A Carle, Summer 2005 © UCB

Buddy System

*Yet another memory management
technique (used in Linux kernel)

Like GNU’s “slab allocator”, but only
allocate blocks in sizes that are
powers of 2 (internal fragmentation is
possible)

 Keep separate free lists for each size

*e.g., separate free lists for 16 byte, 32
byte, 64 byte blocks, etc.

ﬂ CS 61C L0O5 Memory Management (25) A Carle, Summer 2005 © UCB

Buddy System

*|f no free block of size n is available, find a
nlock of size 2n and split it in to two
plocks of size n

*When a block of size nis freed, If its
neighbor of size nis also free, coalesce
the blocks in to a single block of size 2n

 Buddy Is block in other half larger block
buddies NOT buddies
P P
NN T T T]
T 1 | |
| | |

e Same speed advantages as slab allocator

ﬂ CS 61C L0O5 Memory Management (26) A Carle, Summer 2005 © UCB

Allocation Schemes

*So0 which memory management
scheme (K&R, slab, buddy) is
best?

There Is no single best approach for
every application.

e Different applications have different
allocation / deallocation patterns.

A scheme that works well for one
application may work poorly for
another application.

ﬂ CS 61C L0O5 Memory Management (27) A Carle, Summer 2005 © UCB

Automatic Memory Management

 Dynamically allocated memory is
difficult to track —why not track it
automatically?

*|f we can keep track of what m_emorly 1S
In use, we can reclaim everything else

 Unreachable memory is called garbage,
the process of reclaiming it is called
garbage collection.

e S0 how do we track what is In use?

ﬂ CS 61C L0O5 Memory Management (28) A Carle, Summer 2005 © UCB

Tracking Memory Usage

* Techniques depend heavily on the
ﬁrogrammlng language and rely on
elp from the compiler.

« Start with all pointers in global
variables and local variables (root set).

* Recursively examine dynamically
allocated objects we see a pointer to.

 We can do this in constant space by
reversing the pointers on the way down

 How do we recursively find pointers in
dynamically allocated memory?

ﬂ CS 61C L0O5 Memory Management (29) A Carle, Summer 2005 © UCB

Tracking Memory Usage

* Again, it depends heavily on the
programming language and compiler.

* Could have only a single type of
dynamically allocated object in memory
E.g., simple Lisp/Scheme system with only
cons cells (61A’s Scheme not “simple”)
* Could use a strongly typed language
(e.g., Java)

 Don’t allow conversion (casting) between
arbitrary types.

« C/C++ are not strongly typed.

ﬂ Here are 3 schemes to collect garbage
CS 61C L05 Memory Management (30)

A Carle, Summer 2005 © UCB

Scheme 1: Reference Counting

* For every chunk of dynamically
allocated memory, keep a count of
number of pointers that point to it.

*\When the count reaches 0, reclaim.

* Simple assignment statements can
result in a lot of work, since may
update reference counts of many
items

ﬂ CS 61C L0O5 Memory Management (31) A Carle, Summer 2005 © UCB

Reference Counting Example

* For every chunk of dynamically
allocated memory, keep a count of
number of pointers that point to it.

* When the count reaches 0, reclaim.

= hai looG SYNC
pl = malloc(sizeof(int)); -
p2 = malloc(sizeof(int)); p2

*pl = 10; *p2 = 20;
Reference 6 Reference

_ 10
count=1 count=1

ﬂ CS 61C L0O5 Memory Management (32) A Carle, Summer 2005 © UCB

Reference Counting Example

* For every chunk of dynamically
allocated memory, keep a count of
number of pointers that point to it.

* When the count reaches 0, reclaim.
int *pl, *p2;

pl = malloc(sizeof(int)); P

02 = malloc(sizeof(int)): p2

*pl = 10; *p2 = 20;

pl = p2;
Reference 20 Reference ‘ 10 ‘
count =2 count=0

ﬂ CS 61C L0O5 Memory Management (33) A Carle, Summer 2005 © UCB

Reference Counting (p1l, p2 are pointers)
Pl = p2;
e Increment reference count for p2

|If p1 held a valid value, decrement its
reference count

*If the reference count for plis now O,
reclaim the storage it points to.

o If the storage pointed to by pl held other
pointers, decrement all of their reference
counts, and so on...

* Must also decrement reference count
Qwhen local variables cease to exist.

CS 61C L0O5 Memory Management (34) A Carle, Summer 2005 © UCB

Reference Counting Flaws

* Extra overhead added to assignments,
as well as ending a block of code.

e Does not work for circular structures!
*E.g., doubly linked list:

Q CS 61C L0O5 Memory Management (35)

/P

A Carle, Summer 2005 © UCB

Scheme 2: Mark and Sweep Garbage Col.

* Keep allocating new memory until
memory Is exhausted, then try to find
unused memory.

* Consider objects in heap a graph, chunks
of memory (objects) are graph nodes,
pointers to memory are graph edges.

 Edge from A to B => A stores pointer to B

e Can start with the root set, perform a
graph traversal, find all usable memory!

2 Phases: (1) Mark used nodes;(2) Sweep
free ones, returning list of free nodes

ﬂ CS 61C L0O5 Memory Management (36) A Carle, Summer 2005 © UCB

Mark and Sweep

* Graph traversal Is relatively easy to
Implement recursively

void traverse(struct graph_node *node) {
/* visit this node */
foreach child 1n node->children {
traverse(child);

}
}

>But with recursion, state Is stored on
the execution stack.

°Garbage collection is invoked when not
much memory left

°As before, we could traverse in
ﬂconstant space (by reversing pointers)

CS 61C L0O5 Memory Management (37) A Carle, Summer 2005 © UCB

Scheme 3: Copying Garbage Collection

*Divide memory into two spaces, only
one in use at any time.

*When active space Is exhausted,
traverse the active space, copying all
objects to the other space, then make
the new space active and continue.

* Only reachable objects are copied!

«Use “forwarding pointers” to keep
consistency

« Simple solution to avoiding having to have a
table of old and new addresses, and to mark
2 7 objects already copied (see bonus slides)

CS 61C L0O5 Memory Management (38) A Carle, Summer 2005 © UCB

PRS Round 2

A. Of {K&R, Slab, Buddy}, there is no
best (it depends on the problem).

B. Since automatic garbage collection
can occur any time, it Is more
difficult to measure the execution
time of a Java program vs. aC
program.

C. We don’t have automatic garbage
collection in C because of efficiency.

ﬂ CS 61C L0O5 Memory Management (39) A Carle, Summer 2005 © UCB

Summary (1/2)

*C has 3 pools of memory

e Static storage: global variable storage,
pasically permanent, entire program run

* The Stack: local variable storage,
parameters, return address

* The Heap (dynamic storage): malloc()
grabs space from here, free() returns it.

mal Ioc:%1 handles free space with

freelist. Three different ways to find free
space when given a request:

 First fit (find first one that’s free)

* Next fit (same as first, but remembers
where left off)

ﬂ * Best fit (finds most “snug” free space)

CS 61C L0O5 Memory Management (40) A Carle, Summer 2005 © UCB

Summary (2/2)

* Several techniques for managing heap w/
malloc/free: best-, first-, next-fit, slab,buddy

« 2 types of memory fragmentation: internal &
external; all suffer from some kind of frag.

e Each technique has strengths and
weaknesses, none is definitively best

 Automatic memory management relieves
programmer from managing memory.

* All require help from language and compiler

 Reference Count: not for circular structures

 Mark and Sweep: complicated and slow, works
Copying: move active objects back and forth

CS 61C L0O5 Memory Management (41) A Carle, Summer 2005 © UCB

