Inst.eecs.berkeley.edu/~cs61c/sul5

CS61C : Machine Structures
Lecture #6: Intro to MIPS

2005-06-28

ﬂ CS 61C L06 MIPS Intro (1) A Carle, Summer 2005 © UCB

Review

* Several techniques for managing heap w/
malloc/free: best-, first-, next-fit, slab,buddy

« 2 types of memory fragmentation: internal &
external; all suffer from some kind of frag.

e Each technique has strengths and
weaknesses, none is definitively best

 Automatic memory management relieves
programmer from managing memory.

* All require help from language and compiler

 Reference Count: not for circular structures

 Mark and Sweep: complicated and slow, works
Copying: move active objects back and forth

CS 61C L06 MIPS Intro (2) A Carle, Summer 2005 © UCB

Buddy System Review

eLegena: FREE ALLOCATED SPLIT
[1128: 0

[/ [\] 64: 00

| /HLI 32: 0010
A 4 16; 00000010

000 001 010 011 100 101 110 111

Initial State =» Free(001) =» Free(000) = Free(111) = Malloc(16)

* Kudos to Kurt Meinz for

1 :)
ﬂ these fine slides
CS 61C L0O6 MIPS Intro (3) A Carle, Summer 2005 © UCB

Buddy System

eLegena: FREE ALLOCATED SPLIT
[1128: 0

[/ [\] 64: 00

| /HLI 32: 0010
A 4 16; 01000010

000 001 010 011 100 101 110 111

Initial State =» Free(001) =» Free(000) = Free(111) = Malloc(16)

Q CS 61C L06 MIPS Intro (4) A Carle, Summer 2005 © UCB

Buddy System

eLegena: FREE ALLOCATED SPLIT
[1128: 0

[/ [\] 64: 00

| /HLI 32: 0010
A 4 16; 11000010

000 001 010 011 100 101 110 111

Initial State =» Free(001) =» Free(000) = Free(111) = Malloc(16)

Q CS 61C L06 MIPS Intro (5) A Carle, Summer 2005 © UCB

Buddy System

eLegena: FREE ALLOCATED SPLIT
[1128: 0

'/ \‘] 64: 00
% 32: 1010

/NI
I 16: 00000010

000 001 010 011 100 101 110 111

Initial State =» Free(001) =» Free(000) = Free(111) = Malloc(16)

Q CS 61C L06 MIPS Intro (6) A Carle, Summer 2005 © UCB

Buddy System

eLegena: FREE ALLOCATED SPLIT
[1128: 0

'/ \‘] 64: 00
% 32: 1010

/ \
B 16: 00000011

000 001 010 011 100 101 110 111

Initial State =» Free(001) =» Free(000) = Free(111) = Malloc(16)

Q CS 61C L06 MIPS Intro (7) A Carle, Summer 2005 © UCB

Buddy System

eLegena: FREE ALLOCATED SPLIT
[1128: 0

/ \‘] 64: 00
“ 32: 1011

N\

16: 00000000

000 001 010 011 100 101 110 111

Initial State =» Free(001) =» Free(000) = Free(111) = Malloc(16)

Q CS 61C L06 MIPS Intro (8) A Carle, Summer 2005 © UCB

Buddy System
Legend: FREE ALLOCATED SPLIT

T
N\ N
I B 32: 1000

16: 00000000
000 001 010 011 100 101 110 111

Initial State =» Free(001) =» Free(000) = Free(111) = Malloc(16)

ﬂ CS 61C L06 MIPS Intro (9) A Carle, Summer 2005 © UCB

Buddy System

eLegena: FREE ALLOCATED SPLIT
[1128: 0

/ kfﬂ 01

/\
/\

T 16: 11000000

000 001 010 011 100 101 110 111

32: 0000

Initial State =» Free(001) =» Free(000) = Free(111) = Malloc(16)

Q CS 61C L06 MIPS Intro (10) A Carle, Summer 2005 © UCB

Buddy System

eLegena: FREE ALLOCATED SPLIT
[1128: 0

/ kfﬂ 01

/\
/\

T 16: 01000000

000 001 010 011 100 101 110 111

32: 0000

Initial State =» Free(001) =» Free(000) = Free(111) = Malloc(16)

Q CS 61C L06 MIPS Intro (11) A Carle, Summer 2005 © UCB

New Topic!

MIPS Assembly Language

Q CS 61C L06 MIPS Intro (12) A Carle, Summer 2005 © UCB

Assembly Language

*Basic job of a CPU: execute lots of
instructions.

eInstructions are the primitive
operations that the CPU may execute.

 Different CPUs implement different
sets of instructions. The set of
Instructions a particular CPU
Implements Is an Instruction Set
Architecture (ISA).

 Examples: Intel 80x86 (Pentium 4),
IBM/Motorola PowerPC (Macintosh),

2 7 MIPS, Intel IA64, ...
CS 61C L06 MIPS Intro (13) A Carle, Summer 2005 © UCB

Instruction Set Architectures

« Early trend was to add more and more
Instructions to new CPUs to do
elaborate operations

e VAX architecture had an instruction to
multiply polynomials!

* RISC philosophy (Cocke IBM,
Patterson, Hennessy, 1980s) —
Reduced Instruction Set Computing

e Keep the instruction set small and simple,
makes it easier to build fast hardware.

et software do complicated operations by
ﬂ composing simpler ones.

CS 61C L06 MIPS Intro (14) A Carle, Summer 2005 © UCB

ISA Design

* Must Run Fast In Hardware =
Eliminate sources of complexity.

Software Hardware

 Symbolic Lookup = fixed var names/#

e Strong typing = No Typing
* Nested expressions = Fixed format Inst
 Many operators = small set of insts

ﬂ CS 61C L06 MIPS Intro (15) A Carle, Summer 2005 © UCB

MIPS Architecture

* MIPS — semiconductor company
that built one of the first
commercial RISC architectures

* We will study the MIPS architecture
In some detail in this class (also

used in upper division courses CS
152, 162, 164)

 Why MIPS instead of Intel 80x867

 MIPS Is simple, elegant. Don’t want
to get bogged down in gritty details.

 MIPS widely used in embedded apps,
x86 little used in embedded, and more
Q embedded computers than PCs

CS 61C L06 MIPS Intro (16)

B

Assembly Variables: Registers (1/4)

*Unlike HLL like C or Java, assembly
cannot use variables

 Why not? Keep Hardware Simple

« Assembly Operands are registers

e limited number of special locations built
directly into the hardware

e operations can only be performed on
these!

* Benefit: Since registers are directly in
hardware, they are very fast
Z (faster than 1 billionth of a second)

CS 61C L06 MIPS Intro (17) A Carle, Summer 2005 © UCB

Assembly Variables: Registers (2/4)

 Drawback: Since registers are in
hardware, there are a predetermined
number of them

e Solution: MIPS code must be very
carefully put together to efficiently use
registers

e 32 registers in MIPS
 Why just 32?7 Smaller is faster

 Each MIPS register is 32 bits wide
* Groups of 32 bits called a word in MIPS

ﬂ CS 61C L06 MIPS Intro (18) A Carle, Summer 2005 © UCB

Assembly Variables: Registers (3/4)

* Registers are numbered from 0 to 31

 Each register can be referred to by
number or name

e Number references:
$0, $1, $2, .. $30, $31

ﬂ CS 61C L06 MIPS Intro (19) A Carle, Summer 2005 © UCB

Assembly Variables: Registers (4/4)

By convention, each register also has
a name to make it easier to code

e For now:
$16 - $23 = $sO - $s7
(correspond to C variables)
$8 - $15 = $tO0 - $t7
(correspond to temporary variables)
Later will explain other 16 register names

*In general, use names to make your
code more readable

ﬂ CS 61C L06 MIPS Intro (20) A Carle, Summer 2005 © UCB

C, Java variables vs. registers

*In C (and most High Level Languages)
variables declared first and given a type

* Example:]
int fahr, celsius;

char a, b, c, d, e;

e Each variable can ONLY represent a

value of the type it was declared as
(cannot mix and match 1nt and char

variables).

*In Assembly Language, the registers
have no type; operation determines how
ereglster contents are treated

CS 61C L06 MIPS Intro (21) A Carle, Summer 2005 © UCB

Comments in Assembly

 Another way to make your code more
readable: comments!

Hash (#) Is used for MIPS comments

e anything from hash mark to end of line is
a comment and will be ignored

e Note: Different from C.

e C comments have format
/> comment */

so they can span many lines

ﬂ CS 61C L06 MIPS Intro (22) A Carle, Summer 2005 © UCB

Assembly Instructions

*In assembly language, each statement
(called an Instruction), executes
exactly one of a short list of simple
commands

*Unlike in C (and most other High Level
Languages), each line of assembly
code contains at most 1 instruction

*Instructions are related to operations
(=, +, -, * /)in C or Java

ﬂ CS 61C L06 MIPS Intro (23) A Carle, Summer 2005 © UCB

MIPS Addition and Subtraction (1/4)

e Syntax of Instructions:
“<op> <dest> <srcl> <src2> “
where:

op) operation by name

dest) operand getting result (“destination™)
srcl) 1st operand for operation (“sourcel”)
src2) 2nd operand for operation (“source2”)

e Syntax Is rigid:
1 operator, 3 operands
2 , *Why? Keep Hardware simple via regularity

CS 61C L06 MIPS Intro (24) A Carle, Summer 2005 © UCB

Addition and Subtraction of Integers (2/4)

e Addition in Assembly
e Example: add $s0,%$sl1,%$s2 (in MIPS)
Equivalent to: sO = s1 + s2(iInC)
where MIPS registers $s0,$s1,$s2 are
assoclated with C variables sO, sl1, s2

e Subtraction in Assembly
 Example: sub $s3,%$s4,$s5 (in MIPS)
Equivalent to: d =e - f(@{nC(C)

where MIPS registers $s3,%$s4,$s5 are
assoclated with C variables d, e, f

ﬂ CS 61C L06 MIPS Intro (25) A Carle, Summer 2005 © UCB

Addition and Subtraction of Integers (3/4)

*How does the following C statement?
a=Db+c+d- e;

e Break into multiple instructions
add $t0, $sl1l, $s2
add $t0, $t0, $s3
sub $s0, $t0, $s4

*Notice: A single line of C may break up
Into several lines of MIPS.

*Notice: Everything after the hash mark
ﬂon each line is ignored (comments)

CS 61C L06 MIPS Intro (26) A Carle, Summer 2005 © UCB

Addition and Subtraction of Integers (4/4)

*How do we do this?
F=(@@+h)-Q+]);
*Use intermediate temporary register
add $t0,%$s1,$s2 # temp = g + h

add $tl1,$s3,$s4 # temp = 1 + j
sub $s0,%$t0,%$t1 # f=(g+h)-(i+})

ﬂ CS 61C L06 MIPS Intro (27) A Carle, Summer 2005 © UCB

Immediates

eImmediates are numerical constants.

* They appear often in code, so there
are special instructions for them.

e Add Immediate:

addi $s0,

$s1,10 (in MIPS)

f=9g+ 10 (inC)
where MIPS registers $s0,%$s1 are

associlatec

e Syntax simi
except that

ﬂ instead of a register.

CS 61C L06 MIPS Intro (28)

with C variables ¥, ¢

ar to add instruction,
ast argument is a number

A Carle, Summer 2005 © UCB

Immediates

eThere Is no Subtract Immediate In
MIPS: Why?

*Limit types of operations that can be
done to absolute minimum

if an operation can be decomposed into a
simpler operation, don’t include it

eaddl ..., =X =subr ..., X=>s0 no subi

addi $s0,$s1,-10 (in MIPS)
f=9g-10 (inC)

where MIPS registers $s0,%$s1 are
ﬂ associated with C variables ¥, ¢

CS 61C L06 MIPS Intro (29) A Carle, Summer 2005 © UCB

Register Zero

*One particular immediate, the number
zero (0), appears very often in code.

*So we define register zero ($0 or
$zero) to always have the value O; eg

add $s0,%$s1,$zero (in MIPS)
f =9 (nC)

where MIPS registers $s0,$s1 are
associated with C variables ¥, ¢

edefined In hardware, so an instruction
add $zero,$zero,$s0

ﬂwill not do anything!

CS 61C L06 MIPS Intro (30) A Carle, Summer 2005 © UCB

Peer Instruction

A. Types are associated with
declaration in C (normally), but
are associlated with instruction
(operator) in MIPS.

B. Since there are only 8 local ($s)
and 8 temp ($t) variables, we
can’t write MIPS for C exprs that
contain > 16 vars.

C. If p(stored in $s0) were a pointer
to an array of Ints, then p++;
would be addi $s0 $sO 1

ﬂ CS 61C L06 MIPS Intro (31) A Carle, Summer 2005 © UCB

“And In Conclusion...”

In MIPS Assembly Language:
* Registers replace C variables
* One Instruction (simple operation) per line
e Simpler Is Better
« Smaller is Faster

e New Instructions:
add, addr, sub

 New Registers:
C Variables: $s0 - $s7

Temporary Variables: $t0 - $t9
Zero: $zero

CS 61C L06 MIPS Intro (32) A Carle, Summer 2005 © UCB

