inst.eecs.berkeley.edu/~cs6lc/su05

CS61C : Machine Structures
Lecture #7: MIPS Memory & Decisions

ohE
const,

(no, I didn’t draw this...)

2005-06-29

@ Andy Carle

Topic Outline

*Memory Operations

ACarle, Summer 2005 © uce|

Anatomy: 5 components of any Computer

Registers are in the datapath of the
processor; if operands are in memory,
we must transfer them to the processor
= to operate on them, and then transfer

back to memory when done.

Computer

Processor Memory Devices

Input

Regrters I -
| tput

egister Load (from Outpu

E These are “data transfer” instructions...

Carle Summer

Review

*In MIPS Assembly Language:
*Registers replace C variables
*One Instruction (simple operation) per line
*Simpler is Better, Smaller is Faster

*New Instructions:
add, addi, sub

*New Registers:

C Variables: $s0 - $s7
Temporary Variables: $t0 - $t7
Zero: $zero

CSEICLOTMIPSMemor (2)

Calle, SUNMer 20050 U

Assembly Operands: Memory

»C variables map onto registers; what
about large data structures like arrays?

*1 of 5 components of a computer:
memory contains such data structures

*But MIPS arithmetic instructions only
operate on registers, never directly on
memory.

e Data transfer instructions transfer data
between registers and memory:

«Memory to register

@ *Register to memory

Data Transfer: Memory to Reg (1/5)
*To specify a memory address to copy
from, specify two things:
« A register containing a pointer to memory
* A numerical offset (in bytes)

*The desired memory address is the
sum of these two values.

*Example: 8($t0)

*specifies the memory address pointed to
by the value in $t0, plus 8 bytes

@c S1C LOTMIPS Memory (6) Cale, SUmme 20050.UCE

Data Transfer: Memory to Reg (2/5)

eLoad Instruction Syntax:
lw <regl> <offset>(<reg2>)
*where
Iw: op name to load a word from memory
regl: register that will receive value
offset: numerical address offset in bytes

reg2: register containing pointer to memory

Equivalent to:
regl € Memory [reg2 +offset]

@c AC LO7 MIPS Memory ()

ACarle Sunmer

Data Transfer: Reg to Memory (4/5)

» Also want to store from register into memory
« Store instruction syntax is identical to Load’s

* MIPS Instruction Name:

sw (meaning Store Word, so 32 bits or one
word are loaded at a time)

e Example:sw $t0,12($s0)

This instruction will take the pointer in $s0, add 12
bytes to it, and then store the value from register
$t0 into that memory address

Z- Remember: “Store INTO memory”
Ce eI uPs ooy (0

ACarle, Summer 2005 © uce|

Addressing: What's a Word? (1/5)

*A word is the basic unit of the
computer.

e Usually sizeof(word) == sizeof(registers)
» Can be 32 bits, 64 bits, 8 bits, etc.

*Not necessarily the smallest unit in the
machine!

Carle, Summer 2005 0 UCh|

Data Transfer: Memory to Reg (3/5)

Example: 1w $t0,12 ($s0)

This instruction will take the pointer in $s0, add
12 bytes to it, and then load the value from the

memory pointed to by this calculated sum into
register $t0

* Notes:
«$s0 is called the base reqgister
« 12 s called the offset

« offset is generally used in accessing elements
of array or structure: base reg points to
beginning of array or structure

CSOICLO7 MIPSMemory (3) Calle, SUNMer 20050 U

Data Transfer: Pointers v. Values (5/5)

*Key Concept: A register can hold any
32-bit value. That value can be a
(signed) int, an unsigned int, a
pointer (memory address), and so on

*If you write 1w $t2,0($t0)
then $t0 better contain a pointer

*Don’t mix these up!

ACarle Summer

Addressing: Byte vs. word (2/5)

*Every word in memory has an address,
similar to an index in an array

«Early computers numbered words like
C numbers elements of an array:

eMemory[0], Memory[]], Memory[2], ...
cjmm]: of a wor
«Computers needed to access 8-bit
bytes as well as words (4 bytes/word)

*Today machines address memory as
bytes, (i.e.,”Byte Addressed”) hence 32-
bit (4 byte) word addresses differ by 4

@ eMemory[0], Memory[4], Memory[8], ...

CS61CLO7 MIPS Memory (1

Cale, SUmme 20050.UCE

Addressing: The Offset Field (3/5)
*What offset in 1w to select A[8] in C?

» 4x8=321t0 select A[8]: byte v. word

«Compile by hand using registers:
g=h + A[8];

e g: $s1, h: $s2, $s3:base address of A

« 1st transfer from memory to register:

*Add 32 to $s3 to select A[8], put into $t0

*Next add it to h and placein g
dd $s1,$s2,5t0 # $s1 = h+A[8]

CS61CLO7 MPS Memorv (13) ACarle Sunmer

1w $t0,32($s3) # $t0 gets A[8]

Addressing: Memory Alignment (5/5)

addresses that are multiples of 4 bytes

Last hex digit

; of address is:
|

Not r 1,5,9, or Dy,
Aligned 2,6, A, or E.,
ey 37

0i1{2:{3

*Called Alignment: objects must fall on
address that is multiple of their size.

*MIPS requires that all words start at byte

Peer Instruction Round 1

We want to translate *x = *yinto MIPS
(x, y are pointers stored in: $s0 $sl1)

@c ACLO7 MIPS Memory () Carle, Summer 2005 0 UCh|

Addressing: Pitfalls (4/5)

* Pitfall: Forgetting that sequential word
addresses in machines with byte
addressing do not differ by 1.

*Many an assembly language programmer
has toiled over errors made by assuming
that the address of the next word can be
found by incrementing the address in a
register by 1 instead of by the word size
in bytes.

*So remember that for both 1w and sw, the
sum of the base address and the offset

must be a multiple of 4 (to be word
aligned)

@ CSEICLO7 MIPS Memory (1) Cale, Summer 200

Role of Registers vs. Memory
*What if more variables than registers?

» Compiler tries to keep most frequently
used variable in registers

eLess common in memory: spilling

*Why not keep all variables in memory?
eregisters are faster than memory
*Why not have arithmetic insts to
operate on memory addresses?
*E.g. “addmem 0($s1) 0($s2) 0($s3)”
*«Some ISAs do things like this (x86)
@ * MIPS — Keep the common case fast.

S 61CLO7 MIPS Memory (16 ACarle Summer

Topic Outline

*Memory Operations

*Decisions

So Far...

* All instructions so far only manipulate
data...we’ve built a calculator.

*In order to build a computer, we need
ability to make decisions...

»C (and MIPS) provide labels to support
“goto” jumps to placésin code.

*C: Horrible style; MIPS: Necessary!
*Speed over ease-of-use (again!)

@ CS61CLO7 MPS Memory (19) ACarle Sunmer

Decisions: C if Statements (1/3)

*2 kinds of if statements in C
eif (condition) clause
eif (condition) clausel else clause2

*Rearrange 2nd if into following:

if (condition) goto L1;
clause2;
goto L2;

L1l: clausel;

L2:

*Not as elegant as if-else, but same

Decisions: MIPS Instructions (2/3)

*Decision instruction in MIPS:
*beq registerl, register2, L1
*beq is “Branch if (registers are) equal”
Same meaning as (using C):
if (registerl==register2) goto L1
«Complementary MIPS decision instruction
ebne registerl, register2, L1

ebne is “Branch if (registers are) not equal”
Same meaning as (using C):
if (registerl'!=register2) goto L1

g?alled conditional branches

Example: Compiling C if into MIPS (1/2)
*Compile by hand (true) (false)
if (i = J) f=g+h; i::j il=j
else f=g-h;
*Use this mapping: Exit
£: $s0
g: $s1
h: $s2
i: §s3
j: $s4

@c AC LO7 MIPS Memory (23) Carle, Summer 2005 0 UCh|

eaning

Decisions: MIPS Goto Instruction (3/3)

+In addition to conditional branches,
MIPS has an unconditional branch:

j label

*Called a Jump Instruction: jump ﬁor
branch) directly to the given label
without needing to satisfy any condition

«Same meaning as (using C):
goto label

eTechnically, it’s the same* as:
beq $0,$0,label
@ since it always satisfies the condition.

S 61CLO7 MIPS Memory ACarle Summer

Example: Compiling C if into MIPS (2/2)

«Compile by hand (true)

if (i == j) f=g+h; i==]j
else f=g-h;

(false)
il=j

*Final compiled MIPS code:

beq $s3,$s4,True # branch i==j

sub $s0,$s1,$s2 # f=g-h(false)

j Fin # goto Fin
True: add $s0,$sl,$s2 # T=g+h (true)
Fin:

Exit

Note: Compiler automatically creates labels
to handle decisions (branches).
I£Genera||y not found in HLL code.

CS61CLO7 MIPS Memory (24 Salle, SUmmer 20050 U

Topic Outline

*Memory Operations
*Decisions

*More Instructions
*Memory
*Unsigned
*Logical

*Inequalities

o

More Memory Ops: Byte Ops 2/2

*What do with other 24 bits in the 32 bit
register?

=1b: sign extends to fill upper 24 bits
XXXX XXXX XXXX XXXX XXXX XXXX
<

. _ . byte
...iIs copied to “sign-extend” loaded

This bit
* Normally don't want to sign extend chars

» MIPS instruction that doesn't sign extend
when loading bytes:

@ load byte unsigned: 1bu

CS 61C Lo7 MIPS Memory (27)

ACarle, Summer 2005 © uce|

Overflow in Arithmetic (2/2)

*Some Ianguacqes detect overflow (Ada),
some don’t (C)

*MIPS solution is 2 kinds of arithmetic
Instructions to recognize 2 choices:
eadd (add), add immediate ﬁaddi) and
subtract (sub) cause overflow to be detected
-add_unsié:]ned (addu), add immediate
unsigned (addiu) and subtract unsigned
(subu) do not cause overflow detection

*Compiler selects appropriate arithmetic

*MIPS C compilers produce
addu, addiu, subu

@c AC LO7 MIPS Memory (29) Carle, Summer 2005 0 UCh|

More Memory Ops: Byte Ops 1/2

«In addition to word data transfers
(1w, sw), MIPS has byte data transfers:

*load byte: 1b
estore byte: sb
esame format as 1w, sw

*What’s the alignment for byte
transfers?

@cm L7 MIPS Memory (26) Cale, Summer 200

Overflow in Arithmetic (1/2)

*Reminder: Overflow occurs when
there is a mistake in arithmetic due to
the limited precision in computers.

*Example (4-bit unsigned numbers):

+15 1111
43 0011
+18 10010

«But we don’t have room for 5-bit
solution, so the solution would be 0010,
which is +2, and wrong.

Two Logic Instructions (1/1)
*More Arithmetic Instructions

*Shift Left: s11 $s1,$s2,2 #sl1=s2<<2

*Store in $s1 the value from $s2 shifted 2
bits to the left, inserting 0's on right; <<in C

«Before: 0000 0002,
0000 0000 0000 0000 0000 0000 0000 0010

- After: 0000 0008, ,
0000 0000 0000 0000 0000 0000 0000 1000,

«What arithmetic effect does shift left have?

two

«Shift Right: srl is opposite shift; >>

Inequalities in MIPS (1/3)

«Until now, we've only tested equalities
(==and !'=in C). General programs need
to test <and > as well.

*Create a MIPS Inequality Instruction:

*“Set on Less Than”
*Syntax: slt regl,reg2,reg3
*Meaning: regl = (reg2 < reg3);

if (reg2 < reg3)
regl = 1;
else regl = 0;

*“set” means “setto 1",
@ “reset” means “setto 0”.

Inequalities in MIPS (3/3)

*Now, we can implement <, but how do
we implement >, <and 27?

*We could add 3 more instructions, but:
*«MIPS goal: Simpler is Better

*Can we implement £in one or more
instructions using just s1t and the
branches?

*What about >?

*What about 2?

ACarle, Summer 2005 © uce|

What about unsigned numbers?

«Also unsigned inequality instructions:
sltu, sltiu

...which set result to 1 or 0 depending
on unsigned comparisons

*What is value of $t0, $t1?

($s0 = FFFF FFFA,,, $s1 = 0000 FFFA,)
slt $t0, $s0, $sl
sltu $tl, $s0, $sl

@c AC LO7 MIPS Memory (35) Carle, Summer 2005 0 UCh|

Inequalities in MIPS (2/3)
*How do we use this?

if (g < h) goto Less; #g:$s0, h:$sl

slt $t0,$s0,$s1 # $tO = 1 if g<h
bne $t0,$0,Less # goto Less

1T $t01=0

(if (g<h)) Less:

*Branchif $t0!=0->» (g <h)
* Register $0 always contains the value 0, so

bne and beq often use it for comparison
after an s1tinstruction.

@ CSOICLO7 MIPS Memory (32) Cale, Summer 200

Immediates in Inequalities (1/1)

*There is also an immediate version of
slt to test against constants: s1ti

*Helpful in for loops

if (g >= 1) goto Loop

Loop: . . .

C
M
| slti $t0,$s0,1 # $t0 = 1 if
P s s # $s0<1 (g<1)
beq t0,$0,Loop # QOtLO Loop
S # ?f $t0==0
(if (g>=1))

@ S 61CLO7 MIPS Memory (34 ACarle Summer

MIPS Signed vs. Unsigned — diff meanings!
*MIPS Signed v. Unsigned is an
“overloaded” term

*Do/Don't sign extend
(Ib, Ibu)

*Don't overflow (but still 2s-comp)
(addu, addiu, subu, multu, divu)

*Do signed/unsigned compare
(slt,slti/sltu,sltiu)

Loops in C/Assembly (1/3)
*Simple loop in C; A[] is an array of ints
do {

g + A[i];
i=1i+73;
} while (i '= h);

g

*Rewrite this as:
Loop: g
i

if_(i '= h) goto Loop;
*Use this mapping:
g, h, i, j, base of A
Z$f1, $s2, $s3, $s4, $s5

AC LO7 MIPS Memory (G7) ACarle Sunmer

Loops in C/Assembly (3/3)

*There are three types of loops in C:
ewhile
edo... while
efor
*Each can be rewritten as either of the
other two, so the method used in the

previous example can be ap‘)lied to
while and for loops as well.

*Key Concept: Though there are multiple
ways of writing a loop in MIPS, the key
to decision making is conditional branch

Summary (1/2)

«Memory is byte-addressable, but 1w and sw
access’ one word at a time.

* A pointer (used by 1w and sw) is just a
memory address, so we can addto it or
subtract from it (using offset).

* A Decision allows us to decide what to
execute at run-time rather than compile-time.

« C Decisions arﬁ_made using conditional
statements within if, while, do while, for.

. MIP&_Deci ion making instructions are the
conditional branches”beq and bne.

* New Instructions:

lw, sw, beq, bne, j

Loops in C/Assembly (2/3)
*Final compiled MIPS code:

Loop: sll $t1,$s3,2 #$tl= 4*1
add $tl1,$t1,$s5 #$tl=addr A
1w $t1,0($tl) #$tl:A[!]
add $s1,$sl,$tl #g=g+All
add $s3,$s3,5s4 #1=14]
bne $s3,$s2,Loop# goto Loop

1f 11=h

*Original code:
Loop: g
i

if (i '= h) goto Loop;

@cm L7 MIPS Memory (G8) Cale, Summer 200

Peer Instruction

Loop:addi $s0,$s0,-1
slti $t0,$s1,2
beq $t0,$0 ,Loop
slt $t0,$sl,$s0
bne $t0,$0 ,Loop

($s0=i, $s1=5)

What C code properly fills in
the blank in loop below?

do {i--;} while(_)

E&fmmwmmu —

Summary (2/2)

+In order to help the conditional branches
make decisions concerning inequalities,
we introduce a single instruction: “ Set
on Less Than”called s1t, s1ti, sltu,
sltiu

*One can load and store (signed and
unsigned) bytes as well as words

*Unsigned add/sub don’t detect overflow

*New MIPS Instructions:
sll, srl
slt, slti, sltu, sltiu
Z addu, addiu, subu

CS61CLO7 MIPS Memory (4 Salle, SUmmer 20050 U

