
CS 61C L08 MIPS Procedures (1) A Carle, Summer 2005 © UCB

inst.eecs.berkeley.edu/~cs61c/su05
CS61C : Machine Structures

Lecture #8: MIPS Procedures

2005-06-30

Andy Carle

CS 61C L08 MIPS Procedures (2) A Carle, Summer 2005 © UCB

Topic Outline

• Functions
• More Logical Operations

CS 61C L08 MIPS Procedures (3) A Carle, Summer 2005 © UCB

C functions
main() {
int i,j,k,m;
...
i = mult(j,k); ...
m = mult(i,i); ...

}

/* really dumb mult function */

int mult (int mcand, int mlier){
int product;

product = 0;
while (mlier > 0) {
product = product + mcand;
mlier = mlier -1; }
return product;
}

What information must
compiler/programmer
keep track of?

What instructions can
accomplish this?

CS 61C L08 MIPS Procedures (4) A Carle, Summer 2005 © UCB

Function Call Bookkeeping

• What are the properties of a function?
• Function call transfers control
somewhere else and then returns.

• Arguments
• Return Value
• Black-box operation/scoping
• Re-entrance

CS 61C L08 MIPS Procedures (5) A Carle, Summer 2005 © UCB

Function Call Bookkeeping

•Registers play a major role in
keeping track of information for
function calls.

•Register conventions:
• Return address $ra

• Arguments $a0, $a1, $a2, $a3

• Return value $v0, $v1

• Local variables $s0, $s1, … , $s7

• The stack is also used; more later.

CS 61C L08 MIPS Procedures (6) A Carle, Summer 2005 © UCB

Instruction Support for Functions (1/6)
... sum(a,b);... /* a,b:$s0,$s1 */
}
int sum(int x, int y) {

return x+y;
}

address
1000
1004
1008
1012
1016
2000
2004

C

M
I
P
S

In MIPS, all instructions
are 4 bytes, and stored in
memory just like data. So
here we show the
addresses of where the
programs are stored.

CS 61C L08 MIPS Procedures (7) A Carle, Summer 2005 © UCB

Instruction Support for Functions (2/6)
... sum(a,b);... /* a,b:$s0,$s1 */
}
int sum(int x, int y) {

return x+y;
}

address
1000 add $a0,$s0,$zero # x = a
1004 add $a1,$s1,$zero # y = b
1008 addi $ra,$zero,1016 #ra=1016
1012 j sum #jump to sum
1016 ...

2000 sum: add $v0,$a0,$a1
2004 jr $ra # new instruction

C

M
I
P
S

CS 61C L08 MIPS Procedures (8) A Carle, Summer 2005 © UCB

Instruction Support for Functions (3/6)
... sum(a,b);... /* a,b:$s0,$s1 */
}
int sum(int x, int y) {

return x+y;
}

2000 sum: add $v0,$a0,$a1
2004 jr $ra # new instruction

C

M
I
P
S

• Question: Why use jr here? Why not
simply use j?

• Answer: sum might be called by many
functions, so we can’t return to a fixed
place. The calling proc to sum must be able
to say “return here” somehow.

CS 61C L08 MIPS Procedures (9) A Carle, Summer 2005 © UCB

Instruction Support for Functions (4/6)
• Single instruction to jump and save return
address: jump and link (jal)

• Before:

1008 addi $ra,$zero,1016 #$ra=1016
1012 j sum #go to sum

• After:

1008 jal sum # $ra=1012,go to sum

• Why have a jal? Make the common case
fast: function calls are very common. Also,
you don’t have to know where the code is

loaded into memory with jal.

CS 61C L08 MIPS Procedures (10) A Carle, Summer 2005 © UCB

Instruction Support for Functions (5/6)

• Syntax for jal (jump and link) is same
as for j (jump):

jal label

•jal should really be called laj for
“link and jump”:

• Step 1 (link): Save address of next
instruction into $ra (Why next
instruction? Why not current one?)

• Step 2 (jump): Jump to the given label

CS 61C L08 MIPS Procedures (11) A Carle, Summer 2005 © UCB

Instruction Support for Functions (6/6)

• Syntax for jr (jump register):
jr register

• Instead of providing a label to jump to,
the jr instruction provides a register
which contains an address to jump to.

• Only useful if we know exact address to
jump to.

• Very useful for function calls:
•jal stores return address in register ($ra)
•jr $ra jumps back to that address

CS 61C L08 MIPS Procedures (12) A Carle, Summer 2005 © UCB

Nested Procedures (1/2)
int sumSquare(int x, int y) {

return mult(x,x)+ y;
}

• Something called sumSquare, now
sumSquare is calling mult.

• So there’s a value in $ra that
sumSquare wants to jump back to, but
this will be overwritten by the call to
mult.

• Need to save sumSquare return address
before call to mult.

CS 61C L08 MIPS Procedures (13) A Carle, Summer 2005 © UCB

Nested Procedures (2/2)
• In general, may need to save some
other info in addition to $ra.

• When a C program is run, there are 3
important memory areas allocated:

• Static: Variables declared once per
program, cease to exist only after
execution completes. E.g., C globals

• Heap: Variables declared dynamically
• Stack: Space to be used by procedure
during execution; this is where we can
save register values

CS 61C L08 MIPS Procedures (14) A Carle, Summer 2005 © UCB

C memory Allocation review

0

∞
Address

Code Program

Static Variables declared
once per program

Heap Explicitly created space,
e.g., malloc(); C pointers

Stack Space for saved
procedure information$sp

stack
pointer

CS 61C L08 MIPS Procedures (15) A Carle, Summer 2005 © UCB

Using the Stack (1/2)

• So we have a register $sp which
always points to the last used space in
the stack.

• To use stack, we decrement this
pointer by the amount of space we
need and then fill it with info.

• So, how do we compile this?
int sumSquare(int x, int y) {
return mult(x,x)+ y;

}

CS 61C L08 MIPS Procedures (16) A Carle, Summer 2005 © UCB

Using the Stack (2/2)
•Hand-compile
sumSquare:

addi $sp,$sp,-8 # space on stack
sw $ra, 4($sp) # save ret addr
sw $a1, 0($sp) # save y

add $a1,$a0,$zero # mult(x,x)
jal mult # call mult

lw $a1, 0($sp) # restore y
add $v0,$v0,$a1 # mult()+y
lw $ra, 4($sp) # get ret addr
addi $sp,$sp,8 # restore stack
jr $ra

mult: ...

int sumSquare(int x, int y) {
return mult(x,x)+ y; }

“push”

“pop”

CS 61C L08 MIPS Procedures (17) A Carle, Summer 2005 © UCB

Steps for Making a Procedure Call

1) Save necessary values onto stack.
2) Assign argument(s), if any.
3) jal call

4) Restore values from stack.

CS 61C L08 MIPS Procedures (18) A Carle, Summer 2005 © UCB

Rules for Procedures

• Called with a jal instruction, returns
with a jr $ra

• Accepts up to 4 arguments in $a0, $a1,
$a2 and $a3

• Return value is always in $v0 (and if
necessary in $v1)

• Must follow register conventions (even
in functions that only you will call)!
So what are they?

CS 61C L08 MIPS Procedures (19) A Carle, Summer 2005 © UCB

MIPS Registers

The constant 0 $0 $zero
Reserved for Assembler $1 $at
Return Values $2-$3 $v0-$v1
Arguments $4-$7 $a0-$a3
Temporary $8-$15 $t0-$t7
Saved $16-$23 $s0-$s7
More Temporary $24-$25 $t8-$t9
Used by Kernel $26-27 $k0-$k1
Global Pointer $28 $gp
Stack Pointer $29 $sp
Frame Pointer $30 $fp
Return Address $31 $ra

(From COD 3rd Ed. green insert)
Use names for registers -- code is clearer!

CS 61C L08 MIPS Procedures (20) A Carle, Summer 2005 © UCB

Other Registers

•$at: may be used by the assembler at
any time; unsafe to use

•$k0-$k1: may be used by the OS at
any time; unsafe to use

•$gp, $fp: don’t worry about them
• Note: Feel free to read up on $gp and
$fp in Appendix A, but you can write
perfectly good MIPS code without
them.

CS 61C L08 MIPS Procedures (21) A Carle, Summer 2005 © UCB

Basic Structure of a Function

entry_label:
addi $sp,$sp, -framesize
sw $ra, framesize-4($sp) # save $ra
save other regs if need be

...

restore other regs if need be
lw $ra, framesize-4($sp) # restore $ra
addi $sp,$sp, framesize
jr $ra

Epilogue

Prologue

Body (call other functions…)
ra

memory

CS 61C L08 MIPS Procedures (22) A Carle, Summer 2005 © UCB

Register Conventions (1/4)
• CalleR: the calling function
• CalleE: the function being called
• When callee returns from executing,
the caller needs to know which
registers may have changed and which
are guaranteed to be unchanged.

• Register Conventions: A set of
generally accepted rules as to which
registers will be unchanged after a
procedure call (jal) and which may be
changed.

CS 61C L08 MIPS Procedures (23) A Carle, Summer 2005 © UCB

Register Conventions (1/4)
• none guaranteed inefficient

• Caller will be saving lots of regs that
callee doesn’t use!

• all guaranteed inefficient
• Callee will be saving lots of regs that
caller doesn’t use!

• Register convention: A balance
between the two.

CS 61C L08 MIPS Procedures (24) A Carle, Summer 2005 © UCB

Register Conventions (2/4) - saved

• $0: No Change. Always 0.
• $s0-$s7: Restore if you change. Very
important, that’s why they’re called
saved registers. If the callee changes
these in any way, it must restore the
original values before returning.

• $sp: Restore if you change. The stack
pointer must point to the same place
before and after the jal call, or else
the caller won’t be able to restore
values from the stack.

• HINT -- All saved registers start with S!

CS 61C L08 MIPS Procedures (25) A Carle, Summer 2005 © UCB

Register Conventions (3/4) - volatile
• $ra: Can Change. The jal call itself
will change this register. Caller needs
to save on stack if nested call.

• $v0-$v1: Can Change. These will
contain the new returned values.

• $a0-$a3: Can change. These are
volatile argument registers. Caller
needs to save if they’ll need them after
the call.

• $t0-$t9: Can change. That’s why
they’re called temporary: any
procedure may change them at any
time. Caller needs to save if they’ll
need them afterwards.

CS 61C L08 MIPS Procedures (26) A Carle, Summer 2005 © UCB

Register Conventions (4/4)

• What do these conventions mean?
• If function R calls function E, then
function R must save any temporary
registers that it may be using onto the
stack before making a jal call.

• Function E must save any S (saved)
registers it intends to use before garbling
up their values

• Remember: Caller/callee need to save
only temporary/saved registers they are
using, not all registers.

CS 61C L08 MIPS Procedures (27) A Carle, Summer 2005 © UCB

Peer Instruction 1

When translating this to MIPS…
A. We COULD copy $a0 to $a1 (& then not

store $a0 or $a1 on the stack) to store n
across recursive calls.

B. We MUST save $a0 on the stack since it
gets changed.

C. We MUST save $ra on the stack since we
need to know where to return to…

int fact(int n){
if(n == 0) return 1; else return(n*fact(n-1));}

CS 61C L08 MIPS Procedures (28) A Carle, Summer 2005 © UCB

Administrivia

• HW2 Due Tonight
• HW3 Due Tuesday
• PROJ1 Due next Friday

• Start now!

• MT1: next Friday (7/8), 11-2
• location TBD

CS 61C L08 MIPS Procedures (29) A Carle, Summer 2005 © UCB

Topic Outline

• Functions
• More Logical Operations

CS 61C L08 MIPS Procedures (30) A Carle, Summer 2005 © UCB

Bitwise Operations

• Up until now, we’ve done arithmetic (add,
sub,addi), memory access (lw and sw),
and branches and jumps.

• All of these instructions view contents of
register as a single quantity (such as a
signed or unsigned integer)

• New Perspective: View contents of register
as 32 raw bits rather than as a single 32-bit
number

• Since registers are composed of 32 bits, we
may want to access individual bits (or
groups of bits) rather than the whole.

• Introduce two new classes of instructions:
• Logical & Shift Ops

CS 61C L08 MIPS Procedures (31) A Carle, Summer 2005 © UCB

Logical Operators (1/3)

• Two basic logical operators:
• AND: outputs 1 only if both inputs are 1
• OR: outputs 1 if at least one input is 1

• Truth Table: standard table listing all
possible combinations of inputs and
resultant output for each. E.g.,

A B A AND B A OR B
0 0
0 1
1 0
1 1

0
1
1
1

0
0
0
1

CS 61C L08 MIPS Procedures (32) A Carle, Summer 2005 © UCB

Logical Operators (2/3)
• Logical Instruction Syntax:

1 2,3,4
• where

1) operation name
2) register that will receive value
3) first operand (register)
4) second operand (register) or

immediate (numerical constant)

• In general, can define them to accept
>2 inputs, but in the case of MIPS
assembly, these accept exactly 2
inputs and produce 1 output

• Again, rigid syntax, simpler hardware

CS 61C L08 MIPS Procedures (33) A Carle, Summer 2005 © UCB

Logical Operators (3/3)

• Instruction Names:
•and, or: Both of these expect the third
argument to be a register

•andi, ori: Both of these expect the third
argument to be an immediate

• MIPS Logical Operators are all bitwise,
meaning that bit 0 of the output is
produced by the respective bit 0’s of
the inputs, bit 1 by the bit 1’s, etc.

• C: Bitwise AND is & (e.g., z = x & y;)
• C: Bitwise OR is | (e.g., z = x | y;)

CS 61C L08 MIPS Procedures (34) A Carle, Summer 2005 © UCB

Uses for Logical Operators (1/3)
• Note that anding a bit with 0 produces a 0
at the output while anding a bit with 1
produces the original bit.

• This can be used to create a mask.
• Example:

1011 0110 1010 0100 0011 1101 1001 1010
0000 0000 0000 0000 0000 1111 1111 1111

• The result of anding these:
0000 0000 0000 0000 0000 1101 1001 1010

mask:

mask last 12 bits

CS 61C L08 MIPS Procedures (35) A Carle, Summer 2005 © UCB

Uses for Logical Operators (2/3)

• The second bitstring in the example is
called a mask. It is used to isolate the
rightmost 12 bits of the first bitstring
by masking out the rest of the string
(e.g. setting it to all 0s).

• Thus, the and operator can be used to
set certain portions of a bitstring to 0s,
while leaving the rest alone.

• In particular, if the first bitstring in the
above example were in $t0, then the
following instruction would mask it:
andi $t0,$t0,0xFFF

CS 61C L08 MIPS Procedures (36) A Carle, Summer 2005 © UCB

Uses for Logical Operators (3/3)

• Similarly, note that oring a bit with 1
produces a 1 at the output while oring
a bit with 0 produces the original bit.

• This can be used to force certain bits
of a string to 1s.

• For example, if $t0 contains 0x12345678,
then after this instruction:

ori $t0, $t0, 0xFFFF
• … $t0 contains 0x1234FFFF (e.g. the
high-order 16 bits are untouched, while
the low-order 16 bits are forced to 1s).

CS 61C L08 MIPS Procedures (37) A Carle, Summer 2005 © UCB

Shift Instructions (1/4)

• Move (shift) all the bits in a word to the
left or right by a number of bits.

• Example: shift right by 8 bits
0001 0010 0011 0100 0101 0110 0111 1000

0000 0000 0001 0010 0011 0100 0101 0110
• Example: shift left by 8 bits
0001 0010 0011 0100 0101 0110 0111 1000

0011 0100 0101 0110 0111 1000 0000 0000

CS 61C L08 MIPS Procedures (38) A Carle, Summer 2005 © UCB

Shift Instructions (2/4)

• Shift Instruction Syntax:
1 2,3,4

• where
1) operation name
2) register that will receive value
3) first operand (register)
4) shift amount (constant <= 32)

• MIPS shift instructions:
1. sll (shift left logical): shifts left and fills

emptied bits with 0s
2. srl (shift right logical): shifts right and fills

emptied bits with 0s
3. sra (shift right arithmetic): shifts right and fills

emptied bits by sign extending

CS 61C L08 MIPS Procedures (39) A Carle, Summer 2005 © UCB

Shift Instructions (3/4)

• Example: shift right arith by 8 bits
0001 0010 0011 0100 0101 0110 0111 1000

0000 0000 0001 0010 0011 0100 0101 0110

• Example: shift right arith by 8 bits
1001 0010 0011 0100 0101 0110 0111 1000

1111 1111 1001 0010 0011 0100 0101 0110

CS 61C L08 MIPS Procedures (40) A Carle, Summer 2005 © UCB

Shift Instructions (4/4)

• Since shifting may be faster than
multiplication, a good compiler usually
notices when C code multiplies by a
power of 2 and compiles it to a shift
instruction:
a *= 8; (in C)
would compile to:
sll $s0,$s0,3 (in MIPS)

• Likewise, shift right to divide by
powers of 2

• remember to use sra

CS 61C L08 MIPS Procedures (41) A Carle, Summer 2005 © UCB

Peer Instruction: Compile This (1/5)
main() {
int i,j,k,m; /* i-m:$s0-$s3 */
...
i = mult(j,k); ...
m = mult(i,i); ...

}

int mult (int mcand, int mlier){
int product;

product = 0;
while (mlier > 0) {
product += mcand;
mlier -= 1; }
return product;
}

CS 61C L08 MIPS Procedures (42) A Carle, Summer 2005 © UCB

Peer Instruction: Compile This (2/5)
__start:

add $a0,$s1,$0 # arg0 = j
add $a1,$s2,$0 # arg1 = k
jal mult # call mult
add $s0,$v0,$0 # i = mult()
...
add $a0,$s0,$0 # arg0 = i
add $a1,$s0,$0 # arg1 = i
jal mult # call mult
add $s3,$v0,$0 # m = mult()
...

done
main() {
int i,j,k,m; /* i-m:$s0-$s3 */
...
i = mult(j,k); ...
m = mult(i,i); ... }

CS 61C L08 MIPS Procedures (43) A Carle, Summer 2005 © UCB

Peer Instruction: Compile This (3/5)

• Notes:
•main function ends with done, not
jr $ra, so there’s no need to save $ra
onto stack

• all variables used in main function are
saved registers, so there’s no need to
save these onto stack

CS 61C L08 MIPS Procedures (44) A Carle, Summer 2005 © UCB

Peer Instruction: Compile This (4/5)
mult:

add $t0,$0,$0 # prod=0
Loop:

slt $t1,$0,$a1 # mlr > 0?
beq $t1,$0,Fin # no=>Fin
add $t0,$t0,$a0 # prod+=mc
addi $a1,$a1,-1 # mlr-=1
j Loop # goto Loop

Fin:
add $v0,$t0,$0 # $v0=prod
jr $ra # return

int mult (int mcand, int mlier){
int product = 0;
while (mlier > 0) {
product += mcand;
mlier -= 1; }
return product;
}

CS 61C L08 MIPS Procedures (45) A Carle, Summer 2005 © UCB

Peer Instruction: Compile This (5/5)

• Notes:
• no jal calls are made from mult and we
don’t use any saved registers, so we
don’t need to save anything onto stack

• temp registers are used for intermediate
calculations (could have used s
registers, but would have to save the
caller’s on the stack.)

•$a1 is modified directly (instead of
copying into a temp register) since we
are free to change it

• result is put into $v0 before returning
(could also have modified $v0 directly)

CS 61C L08 MIPS Procedures (46) A Carle, Summer 2005 © UCB

“And in Conclusion…” (1/2)
• Functions called with jal, return with jr $ra.

• The stack is your friend: Use it to save
anything you need. Just be sure to leave it the
way you found it.

• Instructions we know so far
Arithmetic: add, addi, sub, addu, addiu, subu
Memory: lw, sw

Decision: beq, bne, slt, slti, sltu, sltiu
Unconditional Branches (Jumps): j, jal, jr

• Registers we know so far
• All of them!

CS 61C L08 MIPS Procedures (47) A Carle, Summer 2005 © UCB

“And in Conclusion…” (2/2)

• Register Conventions: Each register has a
purpose and limits to its usage. Learn
these and follow them, even if you’re writing
all the code yourself.

• Logical and Shift Instructions
• Operate on bits individually, unlike arithmetic,

which operate on entire word.
• Use to isolate fields, either by masking or by

shifting back and forth.
• Use shift left logical, sll,for multiplication by

powers of 2
• Use shift right arithmetic, sra,for division by

powers of 2.

• New Instructions:
and,andi, or,ori, sll,srl,sra

