
CS 61C L09 Instruction Format (1) A Carle, Summer 2005 © UCB

inst.eecs.berkeley.edu/~cs61c/su05
CS61C : Machine Structures

Lecture #9: MIPS Instruction Format

2005-07-05

Andy Carle
CS 61C L09 Instruction Format (2) A Carle, Summer 2005 © UCB

Big Idea: Stored-Program Concept

Computers built on 2 key principles:
1) Instructions are represented as data.
2) Therefore, entire programs can be

stored in memory to be read or
written just like data.

CS 61C L09 Instruction Format (3) A Carle, Summer 2005 © UCB

Consequence: Everything Addressed

• Everything has a memory address:
instructions, data words

• One register keeps address of instruction
being executed: “Program Counter” (PC)

• Basically a pointer to memory: Intel calls it
Instruction Address Pointer, a better name

• Computer “brain” executes the instruction at PC
• Jumps and branches modify PC

CS 61C L09 Instruction Format (4) A Carle, Summer 2005 © UCB

Instructions as Numbers (1/2)

• Currently all data we work with is in
words (32-bit blocks):

• Each register is a word.
•lw and sw both access memory one word
at a time.

• So how do we represent instructions?
• Remember: Computer only understands
1s and 0s, so “add $t0,$0,$0” is
meaningless.

• MIPS wants simplicity: since data is in
words, make instructions be words too

CS 61C L09 Instruction Format (5) A Carle, Summer 2005 © UCB

Instructions as Numbers (2/2)

• One word is 32 bits, so divide
instruction word into “fields”.

• Each field tells computer something
about instruction.

• 3 basic types of instruction formats:
• R-format
• I-format
• J-format

CS 61C L09 Instruction Format (6) A Carle, Summer 2005 © UCB

Instruction Formats

• I-format: used for instructions with
immediates, lw and sw (since the offset
counts as an immediate), and the
branches (beq and bne),

• (but not the shift instructions; later)

• J-format: used for j and jal
• R-format: used for all other instructions

CS 61C L09 Instruction Format (7) A Carle, Summer 2005 © UCB

R-Format Instructions (1/5)
• Define “fields” of the following number
of bits each: 6 + 5 + 5 + 5 + 5 + 6 = 32
6 5 5 5 65

opcode rs rt rd functshamt

• For simplicity, each field has a name:

• Important: On these slides and in book, each field
is viewed as a 5- or 6-bit unsigned integer, not as
part of a 32-bit integer.

5-bit fields 0-31, 6-bit fields 0-63.

CS 61C L09 Instruction Format (8) A Carle, Summer 2005 © UCB

R-Format Instructions (2/5)
• What do these field integer values tell us?

•opcode: partially specifies what instruction
it is

- Note: This number is equal to 0 for all R-Format
instructions.

•funct: combined with opcode, this number
exactly specifies the instruction for
R-Format instructions

CS 61C L09 Instruction Format (9) A Carle, Summer 2005 © UCB

R-Format Instructions (3/5)

• More fields:
•rs (Source Register): generally used to
specify register containing first operand

•rt (Target Register): generally used to
specify register containing second
operand (note that name is misleading)

•rd (Destination Register): generally used
to specify register which will receive
result of computation

CS 61C L09 Instruction Format (10) A Carle, Summer 2005 © UCB

R-Format Instructions (4/5)

• Notes about register fields:
• Each register field is exactly 5 bits, which
means that it can specify any unsigned
integer in the range 0-31. Each of these
fields specifies one of the 32 registers by
number.

• The word “generally” was used because
there are exceptions that we’ll see later.
E.g.,

- mult and div have nothing important in the
rd field since the dest registers are hi and lo

- mfhi and mflo have nothing important in the
rs and rt fields since the source is
determined by the instruction (p. 264 P&H)

CS 61C L09 Instruction Format (11) A Carle, Summer 2005 © UCB

R-Format Instructions (5/5)

• Final field:
•shamt: This field contains the amount a
shift instruction will shift by. Shifting a
32-bit word by more than 31 is useless,
so this field is only 5 bits (so it can
represent the numbers 0-31).

• This field is set to 0 in all but the shift
instructions.

• For a detailed description of field
usage for each instruction, see green
insert in COD 3/e

• (You can bring with you to all exams)
CS 61C L09 Instruction Format (12) A Carle, Summer 2005 © UCB

R-Format Example (1/2)

• MIPS Instruction:
add $8,$9,$10

opcode = 0 (look up in table in book)
funct = 32 (look up in table in book)
rs = 9 (first operand)
rt = 10 (second operand)
rd = 8 (destination)
shamt = 0 (not a shift)

CS 61C L09 Instruction Format (13) A Carle, Summer 2005 © UCB

R-Format Example (2/2)

• MIPS Instruction:
add $8,$9,$10

0 9 10 8 320

Binary number per field representation:

• Called a Machine Language Instruction

Decimal number per field representation:

hex representation: 012A 4020hex
decimal representation: 19,546,144ten

000000 01001 01010 01000 10000000000
hex

CS 61C L09 Instruction Format (14) A Carle, Summer 2005 © UCB

I-Format Instructions (1/4)
• What about instructions with
immediates (e.g. addi and lw)?

• 5-bit field only represents numbers up to
the value 31: immediates may be much
larger than this

• Ideally, MIPS would have only one
instruction format (for simplicity):
unfortunately, we need to compromise

• Define new instruction format that is
partially consistent with R-format:

• Notice that, if instruction has an immediate,
then it uses at most 2 registers.

CS 61C L09 Instruction Format (15) A Carle, Summer 2005 © UCB

I-Format Instructions (2/4)

• Define “fields” of the following number
of bits each: 6 + 5 + 5 + 16 = 32 bits

6 5 5 16

opcode rs rt immediate

• Again, each field has a name:

• Key Concept: Only one field is
inconsistent with R-format. Most
importantly, opcode is still in same
location.

CS 61C L09 Instruction Format (16) A Carle, Summer 2005 © UCB

I-Format Instructions (3/4)
• What do these fields mean?

•opcode: same as before except that, since
there’s no funct field, opcode uniquely
specifies an instruction in I-format

• This also answers question of why
R-format has two 6-bit fields to identify
instruction instead of a single 12-bit field:
in order to be consistent with other
formats.

•rs: specifies the only register operand (if
there is one)

•rt: specifies register which will receive
result of computation (this is why it’s
called the target register “rt”)

CS 61C L09 Instruction Format (17) A Carle, Summer 2005 © UCB

I-Format Instructions (4/4)
• The Immediate Field:

•addi, slti, sltiu, the immediate is
sign-extended to 32 bits. Thus, it’s
treated as a signed integer.

• 16 bits can be used to represent
immediate up to 216 different values

• This is large enough to handle the offset
in a typical lw or sw, plus a vast majority
of values that will be used in the slti
instruction.

CS 61C L09 Instruction Format (18) A Carle, Summer 2005 © UCB

I-Format Example (1/2)

• MIPS Instruction:
addi $21,$22,-50

opcode = 8 (look up in table in book)
rs = 22 (register containing operand)
rt = 21 (target register)
immediate = -50 (by default, this is decimal)

CS 61C L09 Instruction Format (19) A Carle, Summer 2005 © UCB

I-Format Example (2/2)

• MIPS Instruction:
addi $21,$22,-50

8 22 21 -50

001000 10110 10101 1111111111001110

Decimal/field representation:

Binary/field representation:

hexadecimal representation: 22D5 FFCEhex
decimal representation: 584,449,998ten

CS 61C L09 Instruction Format (20) A Carle, Summer 2005 © UCB

I-Format Problems (0/3)

• Problem 0: Unsigned # sign-extended?
•addiu, sltiu, sign-extends immediates
to 32 bits. Thus, # is a “signed” integer.

• Rationale
•addiu so that can add w/out overflow

- See K&R pp. 230, 305
•sltiu suffers so that we can have ez HW

- Does this mean we’ll get wrong answers?
- Nope, it means assembler has to handle any

unsigned immediate 215 ≤ n < 216 (I.e., with a
1 in the 15th bit and 0s in the upper 2 bytes)
as it does for numbers that are too large. ⇒

CS 61C L09 Instruction Format (21) A Carle, Summer 2005 © UCB

I-Format Problems (1/3)

• Problem 1:
• Chances are that addi, lw, sw and slti
will use immediates small enough to fit in
the immediate field.

• …but what if it’s too big?
• We need a way to deal with a 32-bit
immediate in any I-format instruction.

CS 61C L09 Instruction Format (22) A Carle, Summer 2005 © UCB

I-Format Problems (2/3)

• Solution to Problem 1:
• Handle it in software + new instruction
• Don’t change the current instructions:
instead, add a new instruction to help out

• New instruction:
lui register, immediate

• stands for Load Upper Immediate
• takes 16-bit immediate and puts these bits
in the upper half (high order half) of the
specified register

• sets lower half to 0s

CS 61C L09 Instruction Format (23) A Carle, Summer 2005 © UCB

I-Format Problems (3/3)
• Solution to Problem 1 (continued):

• So how does lui help us?
• Example:

addi $t0,$t0, 0xABABCDCD

becomes:
lui $at, 0xABAB
ori $at, $at, 0xCDCD
add $t0,$t0,$at

• Now each I-format instruction has only a 16-
bit immediate.

• Wouldn’t it be nice if the assembler would
this for us automatically? (later)

CS 61C L09 Instruction Format (24) A Carle, Summer 2005 © UCB

J-Format Instructions (0/5)

Jumps modify the PC:

“j <label>”

means

“Set the next PC = the address of the
instruction pointed to by <label>”

CS 61C L09 Instruction Format (25) A Carle, Summer 2005 © UCB

J-Format Instructions (1/5)

Jumps modify the PC:
• j and jal jump to labels
• but a label is just a name for an address!
• so, the ML equivalents of j and jal use
addresses

- Ideally, we could specify a 32-bit memory
address to jump to.

- Unfortunately, we can’t fit both a 6-bit
opcode and a 32-bit address into a single
32-bit word, so we compromise:

CS 61C L09 Instruction Format (26) A Carle, Summer 2005 © UCB

J-Format Instructions (2/5)

• Define fields of the following number
of bits each:

6 bits 26 bits

opcode target address

• As usual, each field has a name:

• Key Concepts
• Keep opcode field identical to R-format
and I-format for consistency.

• Combine all other fields to make room
for large target address.

CS 61C L09 Instruction Format (27) A Carle, Summer 2005 © UCB

J-Format Instructions (3/5)

• target has 26 bits of the 32-bit bit address.

• Optimization:
• jumps will only jump to word aligned
addresses,

- so last two bits of address are always 00 (in
binary).

- let’s just take this for granted and not even
specify them.

CS 61C L09 Instruction Format (28) A Carle, Summer 2005 © UCB

J-Format Instructions (4/5)

• Now : we have 28 bits of a 32-bit address
• Where do we get the other 4 bits?

• By definition, take the 4 highest-order bits
from the PC.

• Technically, this means that we cannot jump
to anywhere in memory, but it’s adequate
99.9999…% of the time, since programs
aren’t that long

- only if jump straddles a 256 MB boundary
- If we absolutely need to specify a 32-bit

address, we can always put it in a register and
use the jr instruction.

CS 61C L09 Instruction Format (29) A Carle, Summer 2005 © UCB

J-Format Instructions (5/5)

• Summary:
• Next PC = { PC[31..28], target address, 00 }

• Understand where each part came from!
• Note: { , , } means concatenation
{ 4 bits , 26 bits , 2 bits } = 32 bit address

• { 1010, 11111111111111111111111111, 00 }
= 10101111111111111111111111111100

• Note: Book uses ||, Verilog uses { , , }
• We won’t actually be learning Verilog, but
it is useful to know a little of its notation

CS 61C L09 Instruction Format (30) A Carle, Summer 2005 © UCB

Other Jumps and Branches

• We have j and jal
• What about jr?

• J-format won’t work (no reg field)
• So, use R-format and ignore other regs:

• What about beq and bne?
• Tight fit: 2 regs and an immediate (address)

opcode rs rt rd functshamt
0 $reg 0 0 80

CS 61C L09 Instruction Format (31) A Carle, Summer 2005 © UCB

Branches: PC-Relative Addressing (1/4)

• Use I-Format
opcode rs rt immediate

•opcode specifies beq v. bne
•rs and rt specify registers to compare
• What can immediate specify?

•Immediate is only 16 bits
• Using word-align trick, we can get 18 bits
• Still not enough!

- Would have to use jr if straddling a 256KB.

CS 61C L09 Instruction Format (32) A Carle, Summer 2005 © UCB

Branches: PC-Relative Addressing (2/4)
• How do we usually use branches?

• Answer: if-else, while, for
• Loops are generally small: typically up to
50 instructions

• Function calls and unconditional jumps are
done using jump instructions (j and jal),
not the branches.

• Conclusion: may want to branch to
anywhere in memory, but a branch often
changes PC by a small amount…

CS 61C L09 Instruction Format (33) A Carle, Summer 2005 © UCB

Branches: PC-Relative Addressing (3/4)

• Solution to branches in a 32-bit
instruction: PC-Relative Addressing

• Let the 16-bit immediate field be a
signed two’s complement integer to be
added to the PC if we take the branch.

• Now we can branch ± 215 words from
the PC, which should be enough to
cover almost any loop.

CS 61C L09 Instruction Format (34) A Carle, Summer 2005 © UCB

Branches: PC-Relative Addressing (4/4)
• Branch Calculation:

• If we don’t take the branch:
next PC = PC + 4

PC+4 = byte address of next instruction
• If we do take the branch:

next PC = (PC + 4) + (immediate * 4)
• Observations

- Immediate field specifies the number of
words to jump, which is simply the number of
instructions to jump.

- Immediate field can be positive or negative.
- Due to hardware, add immediate to (PC+4),

not to PC; will be clearer why later in course

CS 61C L09 Instruction Format (35) A Carle, Summer 2005 © UCB

Branch Example (1/3)
• MIPS Code:

Loop: beq $9,$0,End
add $8,$8,$10
addi $9,$9,-1

j Loop

End: sub $2,$3,$4

•beq branch is I-Format:
opcode = 4 (look up in table)
rs = 9 (first operand)
rt = 0 (second operand)
immediate = ???

CS 61C L09 Instruction Format (36) A Carle, Summer 2005 © UCB

Branch Example (2/3)

• MIPS Code:
Loop: beq $9,$0,End

addi $8,$8,$10
addi $9,$9,-1
j Loop

End: sub $2,$3,$4

•Immediate Field:
• Number of instructions to add to (or
subtract from) the PC, starting at the
instruction following the branch (“+4”).

• In beq case, immediate = 3

CS 61C L09 Instruction Format (37) A Carle, Summer 2005 © UCB

Branch Example (3/3)

• MIPS Code:
Loop: beq $9,$0,End

addi $8,$8,$10
addi $9,$9,-1
j Loop

End: sub $2,$3,$4

4 9 0 3

decimal representation:

binary representation:
000100 01001 00000 0000000000000011

CS 61C L09 Instruction Format (38) A Carle, Summer 2005 © UCB

Questions on PC-addressing

• Does the value in branch field change
if we move the code?

• What do we do if destination is > 215

instructions away from branch?

CS 61C L09 Instruction Format (39) A Carle, Summer 2005 © UCB

MIPS So Far:

• MIPS Machine Language Instruction:
32 bits representing a single instruction

• Branches use PC-relative addressing,
Jumps use PC-absolute addressing.

opcode rs rt immediate
opcode rs rt rd functshamtR

I
J target addressopcode

CS 61C L09 Instruction Format (40) A Carle, Summer 2005 © UCB

Decoding Machine Language

• How do we convert 1s and 0s to C code?
Machine language ⇒ C?

• For each 32 bits:
• Look at opcode: 0 means R-Format, 2 or 3
mean J-Format, otherwise I-Format.

• Use instruction type to determine which
fields exist.

• Write out MIPS assembly code, converting
each field to name, register number/name,
or decimal/hex number.

• Logically convert this MIPS code into valid
C code. Always possible? Unique?

CS 61C L09 Instruction Format (41) A Carle, Summer 2005 © UCB

Decoding Example (1/7)

• Here are six machine language
instructions in hexadecimal:

00001025hex
0005402Ahex
11000003hex
00441020hex
20A5FFFFhex
08100001hex

• Let the first instruction be at address
4,194,304ten (0x00400000hex).

• Next step: convert hex to binary

CS 61C L09 Instruction Format (42) A Carle, Summer 2005 © UCB

Decoding Example (2/7)

• The six machine language instructions in
binary:
00000000000000000001000000100101
00000000000001010100000000101010
00010001000000000000000000000011
00000000010001000001000000100000
00100000101001011111111111111111
00001000000100000000000000000001

• Next step: identify opcode and format

1, 4-31 rs rt immediate
0 rs rt rd functshamtR

I
J target address2 or 3

CS 61C L09 Instruction Format (43) A Carle, Summer 2005 © UCB

Decoding Example (3/7)
• Select the opcode (first 6 bits)
to determine the format:

00000000000000000001000000100101
00000000000001010100000000101010
00010001000000000000000000000011
00000000010001000001000000100000
00100000101001011111111111111111
00001000000100000000000000000001

• Look at opcode:
0 means R-Format,
2 or 3 mean J-Format,
otherwise I-Format.

• Next step: separation of fields

R
R
I
R
I
J

Format:

CS 61C L09 Instruction Format (44) A Carle, Summer 2005 © UCB

Decoding Example (4/7)

• Fields separated based on format/opcode:

0 0 0 2 370
0 0 5 8 420
4 8 0 +3
0 2 4 2 320
8 5 5 -1
2 1,048,577

• Next step: translate (“disassemble”) to
MIPS assembly instructions

R
R
I
R
I
J

Format:

CS 61C L09 Instruction Format (45) A Carle, Summer 2005 © UCB

Decoding Example (5/7)

• MIPS Assembly (Part 1):
Address: Assembly instructions:

0x00400000 or $2,$0,$0
0x00400004 slt $8,$0,$5
0x00400008 beq $8,$0,3
0x0040000c add $2,$2,$4
0x00400010 addi $5,$5,-1
0x00400014 j 0x100001

• Better solution: translate to more
meaningful MIPS instructions (fix the
branch/jump and add labels, registers)

CS 61C L09 Instruction Format (46) A Carle, Summer 2005 © UCB

Decoding Example (6/7)

• MIPS Assembly (Part 2):

or $v0,$0,$0
Loop: slt $t0,$0,$a1

beq $t0,$0,Exit
add $v0,$v0,$a0
addi $a1,$a1,-1
j Loop

Exit:

• Next step: translate to C code
(be creative!)

CS 61C L09 Instruction Format (47) A Carle, Summer 2005 © UCB

Decoding Example (7/7)
• After C code (Mapping below)

$v0: product
$a0: multiplicand
$a1: multiplier

product = 0;
while (multiplier > 0) {

product += multiplicand;
multiplier -= 1;

}

Before Hex:

00001025hex
0005402Ahex
11000003hex
00441020hex
20A5FFFFhex
08100001hex

Demonstrated Big 61C
Idea: Instructions are
just numbers, code is
treated like data

or $v0,$0,$0
Loop: slt $t0,$0,$a1

beq $t0,$0,Exit
add $v0,$v0,$a0
addi $a1,$a1,-1
j Loop

Exit:
CS 61C L09 Instruction Format (48) A Carle, Summer 2005 © UCB

Peer Instruction Question

(for A,B) When combining two C files into
one executable, recall we can compile them
independently & then merge them together.

A. Jump insts don’t require any changes.
B. Branch insts don’t require any changes.
C. You now have all the tools to be able to

“decompile” a stream of 1s and 0s into C!

