
CS 61C L10 Floating Point (1) A Carle, Summer 2005 © UCB

inst.eecs.berkeley.edu/~cs61c/su05
CS61C : Machine Structures

Lecture #10: Floating Point

2005-07-06

Andy Carle
CS 61C L10 Floating Point (2) A Carle, Summer 2005 © UCB

Quote of the day

“95% of the
folks out there are

completely clueless
about floating-point.”
James Gosling
Sun Fellow
Java Inventor
1998-02-28

CS 61C L10 Floating Point (3) A Carle, Summer 2005 © UCB

Review of Numbers

• Computers are made to deal with
numbers

• What can we represent in N bits?
• Unsigned integers:

0 to 2N - 1
• Signed Integers (Two’s Complement)

-2(N-1) to 2(N-1) - 1

CS 61C L10 Floating Point (4) A Carle, Summer 2005 © UCB

Other Numbers
• What about other numbers?

• Very large numbers? (seconds/century)
3,155,760,00010 (3.1557610 x 109)

• Very small numbers? (atomic diameter)
0.0000000110 (1.010 x 10-8)

• Rationals (repeating pattern)
2/3 (0.666666666. . .)

• Irrationals
21/2 (1.414213562373. . .)

• Transcendentals
e (2.718...), π (3.141...)

• All represented in scientific notation

CS 61C L10 Floating Point (5) A Carle, Summer 2005 © UCB

Scientific Notation (in Decimal)

6.0210 x 1023

radix (base)decimal point

mantissa exponent

• Normalized form: no leadings 0s
(exactly one digit to left of decimal point)

• Alternatives to representing 1/1,000,000,000
• Normalized: 1.0 x 10-9

• Not normalized: 0.1 x 10-8,10.0 x 10-10

CS 61C L10 Floating Point (6) A Carle, Summer 2005 © UCB

Scientific Notation (in Binary)

1.0two x 2-1

radix (base)“binary point”

exponent

• Normalized mantissa always has exactly
one “1” before the point.

• Computer arithmetic that supports it called
floating point, because it represents
numbers where binary point is not fixed, as
it is for integers

• Declare such variable in C as float

mantissa

CS 61C L10 Floating Point (7) A Carle, Summer 2005 © UCB

Floating Point Representation (1/2)

• Normal format: +1.xxxxxxxxxxtwo*2yyyytwo

• Multiple of Word Size (32 bits):

031
S Exponent
30 23 22

Significand
1 bit 8 bits 23 bits

• S represents Sign
• Exponent represents y’s
• Significand represents x’s

Represent numbers as small as
2.0 x 10-38 to as large as 2.0 x 1038

CS 61C L10 Floating Point (8) A Carle, Summer 2005 © UCB

Floating Point Representation (2/2)

• What if result too large? (> 2.0x1038)
• Overflow!
• Overflow ⇒ Exponent larger than
represented in 8-bit Exponent field

• What if result too small? (>0, < 2.0x10-38)
• Underflow!
• Underflow ⇒ Negative exponent larger than
represented in 8-bit Exponent field

• How to reduce chances of overflow or
underflow?

CS 61C L10 Floating Point (9) A Carle, Summer 2005 © UCB

Double Precision Fl. Pt. Representation
• Next Multiple of Word Size (64 bits)

• Double Precision (vs. Single Precision)
• C variable declared as double
• Represent numbers almost as small as
2.0 x 10-308 to almost as large as 2.0 x 10308

• But primary advantage is greater accuracy
due to larger significand

031
S Exponent

30 20 19
Significand

1 bit 11 bits 20 bits
Significand (cont’d)

32 bits

CS 61C L10 Floating Point (10) A Carle, Summer 2005 © UCB

QUAD Precision Fl. Pt. Representation
• Next Multiple of Word Size (128 bits)
• Unbelievable range of numbers
• Unbelievable precision (accuracy)
• This is currently being worked on
• The version in progress has 15 bits for
the exponent and 112 bits for the
significand

CS 61C L10 Floating Point (11) A Carle, Summer 2005 © UCB

IEEE 754 Floating Point Standard (1/4)
• Single Precision, DP similar
• Sign bit: 1 means negative

0 means positive
• Significand:

• To pack more bits, leading 1 implicit for
normalized numbers

• 1 + 23 bits single, 1 + 52 bits double

• Note: 0 has no leading 1, so reserve
exponent value 0 just for number 0

CS 61C L10 Floating Point (12) A Carle, Summer 2005 © UCB

IEEE 754 Floating Point Standard (2/4)
• Kahan wanted FP numbers to be used
even if no FP hardware; e.g., sort records
with FP numbers using integer compares

• Could break FP number into 3 parts:
compare signs, then compare exponents,
then compare significands

• Wanted it to be faster, single compare if
possible, especially if positive numbers

• Then want order:
• Highest order bit is sign (negative < positive)
• Exponent next, so big exponent => bigger #
• Significand last: exponents same => bigger #

CS 61C L10 Floating Point (13) A Carle, Summer 2005 © UCB

IEEE 754 Floating Point Standard (3/4)
• Negative Exponent?

• 2’s comp? 1.0 x 2-1 v. 1.0 x2+1 (1/2 v. 2)
0 1111 1111 000 0000 0000 0000 0000 00001/2
0 0000 0001 000 0000 0000 0000 0000 00002
• This notation using integer compare of
1/2 v. 2 makes 1/2 > 2!

• Instead, pick notation 0000 0001 is most
negative, and 1111 1111 is most positive
• 1.0 x 2-1 v. 1.0 x2+1 (1/2 v. 2)

1/2 0 0111 1110 000 0000 0000 0000 0000 0000
0 1000 0000 000 0000 0000 0000 0000 00002

CS 61C L10 Floating Point (14) A Carle, Summer 2005 © UCB

IEEE 754 Floating Point Standard (4/4)
• Called Biased Notation, where bias is
number subtracted to get real number
• IEEE 754 uses bias of 127 for single prec.
• Subtract 127 from Exponent field to get
actual value for exponent

• Summary (single precision):
031

S Exponent
30 23 22

Significand
1 bit 8 bits 23 bits
• (-1)S x (1 + Significand) x 2(Exponent-127)

• Double precision identical, except with
exponent bias of 1023

CS 61C L10 Floating Point (15) A Carle, Summer 2005 © UCB

?

0 0111 1101 0000 0000 0000 0000 0000 000

Is this floating point number:

> 0?

= 0?

< 0?

CS 61C L10 Floating Point (16) A Carle, Summer 2005 © UCB

Understanding the Significand (1/2)

• Method 1 (Fractions):
• In decimal: 0.34010 => 34010/100010

=> 3410/10010

• In binary: 0.1102 => 1102/10002 = 610/810
=> 112/1002 = 310/410

• Advantage: less purely numerical, more
thought oriented; this method usually
helps people understand the meaning of
the significand better

CS 61C L10 Floating Point (17) A Carle, Summer 2005 © UCB

Understanding the Significand (2/2)

• Method 2 (Place Values):
• Convert from scientific notation
• In decimal: 1.6732 = (1x100) + (6x10-1) +
(7x10-2) + (3x10-3) + (2x10-4)

• In binary: 1.1001 = (1x20) + (1x2-1) +
(0x2-2) + (0x2-3) + (1x2-4)

• Interpretation of value in each position
extends beyond the decimal/binary point

• Advantage: good for quickly calculating
significand value; use this method for
translating FP numbers

CS 61C L10 Floating Point (18) A Carle, Summer 2005 © UCB

Example: Converting Binary FP to Decimal

• Sign: 0 => positive
• Exponent:

• 0110 1000two = 104ten

• Bias adjustment: 104 - 127 = -23

• Significand:
• 1 + 1x2-1+ 0x2-2 + 1x2-3 + 0x2-4 + 1x2-5 +...
=1+2-1+2-3 +2-5 +2-7 +2-9 +2-14 +2-15 +2-17 +2-22

= 1.0ten + 0.666115ten

0 0110 1000 101 0101 0100 0011 0100 0010

• Represents: 1.666115ten*2-23 ~ 1.986*10-7

(about 2/10,000,000)

CS 61C L10 Floating Point (19) A Carle, Summer 2005 © UCB

Peer Instruction #1

What is the decimal equivalent
of this floating point number?

1 1000 0001 111 0000 0000 0000 0000 0000

CS 61C L10 Floating Point (20) A Carle, Summer 2005 © UCB

Answer

What is the decimal equivalent of:
1 1000 0001 111 0000 0000 0000 0000 0000
S Exponent Significand
(-1)S x (1 + Significand) x 2(Exponent-127)

(-1)1 x (1 + .111) x 2(129-127)

-1 x (1.111) x 2(2)

1: -1.75
2: -3.5
3: -3.75
4: -7
5: -7.5
6: -15
7: -7 * 2^129
8: -129 * 2^7

-111.1
-7.5

CS 61C L10 Floating Point (21) A Carle, Summer 2005 © UCB

Converting Decimal to FP (1/3)

• Simple Case: If denominator is an
exponent of 2 (2, 4, 8, 16, etc.), then
it’s easy.

• Show MIPS representation of -0.75
• -0.75 = -3/4
• -11two/100two = -0.11two

• Normalized to -1.1two x 2-1

• (-1)S x (1 + Significand) x 2(Exponent-127)

• (-1)1 x (1 + .100 0000 ... 0000) x 2(126-127)

1 0111 1110 100 0000 0000 0000 0000 0000

CS 61C L10 Floating Point (22) A Carle, Summer 2005 © UCB

Converting Decimal to FP (2/3)

• Not So Simple Case: If denominator is
not an exponent of 2.

• Then we can’t represent number precisely,
but that’s why we have so many bits in
significand: for precision

• Once we have significand, normalizing a
number to get the exponent is easy.

• So how do we get the significand of a
never-ending number?

CS 61C L10 Floating Point (23) A Carle, Summer 2005 © UCB

Converting Decimal to FP (3/3)

• Fact: All rational numbers have a
repeating pattern when written out in
decimal.

• Fact: This still applies in binary.
• To finish conversion:

• Write out binary number with repeating
pattern.

• Cut it off after correct number of bits
(different for single v. double precision).

• Derive Sign, Exponent and Significand
fields.

CS 61C L10 Floating Point (24) A Carle, Summer 2005 © UCB

Example: Representing 1/3 in MIPS
• 1/3

= 0.33333…10

= 0.25 + 0.0625 + 0.015625 + 0.00390625 + …
= 1/4 + 1/16 + 1/64 + 1/256 + …
= 2-2 + 2-4 + 2-6 + 2-8 + …
= 0.0101010101… 2 * 20

= 1.0101010101… 2 * 2-2

• Sign: 0
• Exponent = -2 + 127 = 125 = 01111101
• Significand = 0101010101…
0 0111 1101 0101 0101 0101 0101 0101 010

CS 61C L10 Floating Point (25) A Carle, Summer 2005 © UCB

Administrivia

• Midterm #1
• Friday, 11:00am – 2:00pm
• 277 Cory
• You may bring with you:

- The green sheet from COD or a photocopy
thereof

- One 8 ½” x 11” note sheet with handwritten
notes on one side

- No books, calculators, other shenanigans

• Project 1 is due Sunday night
• HW4 will be due Tuesday

CS 61C L10 Floating Point (26) A Carle, Summer 2005 © UCB

“Father” of the Floating point standard

IEEE Standard
754 for Binary
Floating-Point

Arithmetic.

www.cs.berkeley.edu/~wkahan/
…/ieee754status/754story.html

Prof. Kahan
1989

ACM Turing
Award Winner!

CS 61C L10 Floating Point (27) A Carle, Summer 2005 © UCB

Representation for ± ∞

• In FP, divide by 0 should produce ± ∞,
not overflow.

• Why?
• OK to do further computations with ∞
E.g., X/0 > Y may be a valid comparison

• Ask math majors

• IEEE 754 represents ± ∞
• Most positive exponent reserved for ∞
• Significands all zeroes

CS 61C L10 Floating Point (28) A Carle, Summer 2005 © UCB

Representation for 0
• Represent 0?

• exponent all zeroes
• significand all zeroes
• What about sign?
•+0: 0 00000000 00000000000000000000000

•-0: 1 00000000 00000000000000000000000

• Why two zeroes?
• Helps in some limit comparisons
• Ask math majors

CS 61C L10 Floating Point (29) A Carle, Summer 2005 © UCB

Special Numbers

• What have we defined so far?
(Single Precision)

Exponent Significand Object
0 0 0
0 nonzero ???
1-254 anything +/- fl. pt. #
255 0 +/- ∞
255 nonzero ???

• Professor Kahan had clever ideas;
“Waste not, want not”

• Exp=0,255 & Sig!=0 …
CS 61C L10 Floating Point (30) A Carle, Summer 2005 © UCB

Representation for Not a Number

• What is sqrt(-4.0)or 0/0?
• If ∞ not an error, these shouldn’t be either.
• Called Not a Number (NaN)
• Exponent = 255, Significand nonzero

• Why is this useful?
• Hope NaNs help with debugging?
• They contaminate: op(NaN,X) = NaN

CS 61C L10 Floating Point (31) A Carle, Summer 2005 © UCB

Representation for Denorms (1/2)
• Problem: There’s a gap among
representable FP numbers around 0

• Smallest representable pos num:
a = 1.0… 2 * 2-126 = 2-126

• Second smallest representable pos num:
b = 1.000……1 2 * 2-126 = 2-126 + 2-149

a - 0 = 2-126

b - a = 2-149

b
a0

+-
Gaps!

Normalization
and implicit 1
is to blame!

CS 61C L10 Floating Point (32) A Carle, Summer 2005 © UCB

Representation for Denorms (2/2)

• Solution:
• We still haven’t used Exponent = 0,
Significand nonzero

• Denormalized number: no leading 1,
implicit exponent = -126.

• Smallest representable pos num:
a = 2-149

• Second smallest representable pos num:
b = 2-148

0
+-

CS 61C L10 Floating Point (33) A Carle, Summer 2005 © UCB

Peer Instruction 2

1. Converting float -> int -> float
produces same float number

2. Converting int -> float -> int
produces same int number

3. FP add is associative:
(x+y)+z = x+(y+z)

CS 61C L10 Floating Point (34) A Carle, Summer 2005 © UCB

“And in conclusion…”
• Floating Point numbers approximate
values that we want to use.

• IEEE 754 Floating Point Standard is most
widely accepted attempt to standardize
interpretation of such numbers
• Every desktop or server computer sold since
~1997 follows these conventions

• Summary (single precision):
031

S Exponent
30 23 22

Significand
1 bit 8 bits 23 bits
• (-1)S x (1 + Significand) x 2(Exponent-127)

• Double precision identical, bias of 1023

