
CS 61C L12 CALL (1) A Carle, Summer 2005 © UCB

inst.eecs.berkeley.edu/~cs61c/su05
CS61C : Machine Structures

Lecture #12: CALL

2005-07-11

Andy Carle
CS 61C L12 CALL (2) A Carle, Summer 2005 © UCB

CALL Overview

• Interpretation vs Translation
• Translating C Programs

• Compiler
• Assembler
• Linker
• Loader

• An Example

CS 61C L12 CALL (3) A Carle, Summer 2005 © UCB

Interpretation vs Translation

• How do we run a program written in a
source language?

• Interpreter: Directly executes a
program in the source language

• Translator: Converts a program from
the source language to an equivalent
program in another language

CS 61C L12 CALL (4) A Carle, Summer 2005 © UCB

Language Continuum

• Interpret a high level language if
efficiency is not critical

• Translate (compile) to a lower level
language to improve performance

• Scheme example …

Easy to write
Inefficient to run

Difficult to write
Efficient to run

Scheme
Java
C++ C

Assembly
machine language

CS 61C L12 CALL (5) A Carle, Summer 2005 © UCB

Interpretation

Scheme program: foo.scm

Scheme Interpreter

CS 61C L12 CALL (6) A Carle, Summer 2005 © UCB

Translation

Scheme program: foo.scm

Hardware

Scheme Compiler

Executable(mach lang pgm): a.out

°Scheme Compiler is a translator from
Scheme to machine language.

CS 61C L12 CALL (7) A Carle, Summer 2005 © UCB

Interpretation

• Any good reason to interpret machine
language in software?

• SPIM – useful for learning / debugging
• Apple Macintosh conversion

• Switched from Motorola 680x0
instruction architecture to PowerPC.

• Could require all programs to be re-
translated from high level language

• Instead, let executables contain old
and/or new machine code, interpret old
code in software if necessary

CS 61C L12 CALL (8) A Carle, Summer 2005 © UCB

Interpretation vs. Translation?
• Easier to write interpreter
• Interpreter closer to high-level, so gives
better error messages (e.g., SPIM)

• Translator reaction: add extra information
to help debugging (line numbers, names)

• Interpreter slower (10x?) but code is
smaller (1.5X to 2X?)

• Interpreter provides instruction set
independence: run on any machine

• See Apple example

CS 61C L12 CALL (9) A Carle, Summer 2005 © UCB

Steps to Starting a Program
C program: foo.c

Compiler
Assembly program: foo.s

Assembler

Linker

Executable(mach lang pgm): a.out

Loader
Memory

Object(mach lang module): foo.o

lib.o

CS 61C L12 CALL (10) A Carle, Summer 2005 © UCB

Compiler

• Input: High-Level Language Code
(e.g., C, Java such as foo.c)

• Output: Assembly Language Code
(e.g., foo.s for MIPS)

• Note: Output may contain
pseudoinstructions

• Pseudoinstructions: instructions that
assembler understands but not in
machine (last lecture) For example:

• mov $s1,$s2 ⇒ or $s1,$s2,$zero

CS 61C L12 CALL (11) A Carle, Summer 2005 © UCB

Where Are We Now?
C program: foo.c

Assembly program: foo.s

Executable(mach lang pgm): a.out

Compiler

Assembler

Linker

Loader
Memory

Object(mach lang module): foo.o

lib.o

CS 61C L12 CALL (12) A Carle, Summer 2005 © UCB

Assembler

• Input: MAL Assembly Language Code
(e.g., foo.s for MIPS)

• Output: Object Code, information tables
(e.g., foo.o for MIPS)

• Reads and Uses Directives
• Replace Pseudoinstructions
• Produce Machine Language
• Creates Object File

CS 61C L12 CALL (13) A Carle, Summer 2005 © UCB

Assembler Directives (p. A-51 to A-53)

• Give directions to assembler, but do not
produce machine instructions

.text: Subsequent items put in user text
segment
.data: Subsequent items put in user data
segment
.globl sym: declares sym global and can
be referenced from other files
.asciiz str: Store the string str in
memory and null-terminate it
.word w1…wn: Store the n 32-bit quantities
in successive memory words

CS 61C L12 CALL (14) A Carle, Summer 2005 © UCB

Pseudoinstruction Replacement
• Asm. treats convenient variations of machine

language instructions as if real instructions
Pseudo: Real:
subu $sp,$sp,32 addiu $sp,$sp,-32

sd $a0, 32($sp) sw $a0, 32($sp)
sw $a1, 36($sp)

mul $t7,$t6,$t5 mult $t6,$t5
mflo $t7

addu $t0,$t6,1 addiu $t0,$t6,1

ble $t0,100,loop slti $at,$t0,101
bne $at,$0,loop

la $a0, str lui $at,left(str)
ori $a0,$at,right(str)

CS 61C L12 CALL (15) A Carle, Summer 2005 © UCB

Producing Machine Language (1/3)

• Constraint on Assembler:
• The object file output (foo.o) may be only
one of many object files in the final
executable:

- C: #include “my_helpers.h”
- C: #include <stdio.h>

• Consequences:
• Object files won’t know their base
addresses until they are linked/loaded!

• References to addresses will have to be
adjusted in later stages

CS 61C L12 CALL (16) A Carle, Summer 2005 © UCB

Producing Machine Language (2/3)

• Simple Case
• Arithmetic, Logical, Shifts, and so on.
• All necessary info is within the
instruction already.

• What about Branches?
• PC-Relative and in-file
• In TAL, we know by how many
instructions to branch.

• So these can be handled easily.

CS 61C L12 CALL (17) A Carle, Summer 2005 © UCB

Producing Machine Language (3/3)

• What about jumps (j and jal)?
• Jumps require absolute address.

• What about references to data?
•la gets broken up into lui and ori
• These will require the full 32-bit address
of the data.

• These can’t be determined yet, so we
create two tables for use by
linker/loader…

CS 61C L12 CALL (18) A Carle, Summer 2005 © UCB

1: Symbol Table
• List of “items” provided by this file.

• What are they?
- Labels: function calling
- Data: anything in the .data section;

variables which may be accessed across
files

• Includes base address of label in the file.

CS 61C L12 CALL (19) A Carle, Summer 2005 © UCB

2: Relocation Table

• List of “items” needed by this file.
• Any label jumped to: j or jal

- internal
- external (including lib files)

• Any named piece of data
- Anything referenced by the la instruction
- static variables

• Contains base address of instruction
w/dependency, dependency name

CS 61C L12 CALL (20) A Carle, Summer 2005 © UCB

Question
• Which lines go in the symbol table and/or
relocation table?
my_func:
lui $a0 my_arrayh # a (from la)
ori $a0 $a0 my_arrayl # b (from la)
jal add_link # c
bne $a0,$v0, my_func # d

A:
B:
C:
D:

Symbol: my_func relocate: my_array

- -

- relocate: my_array
- relocate: add_link

CS 61C L12 CALL (21) A Carle, Summer 2005 © UCB

Peer Instruction 1

1. Assembler knows where a module’s data &
instructions are in relation to other modules.

2. Assembler will ignore the instruction
Loop:nop because it does nothing.

3. Java designers used an interpreter (rather
than a translater) mainly because of (at least
one of): ease of writing, better error msgs,
smaller object code.

CS 61C L12 CALL (22) A Carle, Summer 2005 © UCB

Administrivia

• Congratulations to everyone for making it
through what turned out to be a fairly
difficult exam

• Midterms will be handed back either today in
section or tomorrow in lab

• Statistics will be on the website once everyone
has taken the test and they have all been graded
(soon)

• HW 45
• The unholy concatenation of HW 4 and HW 5
• Will be released today and be due Monday in

lecture (paper hand-in)
• Will be worth 20 points rather than the normal

10 points

CS 61C L12 CALL (23) A Carle, Summer 2005 © UCB

Object File Format
• object file header: size and position of
the other pieces of the object file

• text segment: the machine code
• data segment: binary representation of
the data in the source file

• relocation information: identifies lines
of code that need to be “handled”

• symbol table: list of this file’s labels
and data that can be referenced

• debugging information
CS 61C L12 CALL (24) A Carle, Summer 2005 © UCB

Where Are We Now?
C program: foo.c

Assembly program: foo.s

Executable(mach lang pgm): a.out

Compiler

Assembler

Linker

Loader
Memory

Object(mach lang module): foo.o

lib.o

CS 61C L12 CALL (25) A Carle, Summer 2005 © UCB

Link Editor/Linker (1/3)
• Input: Object Code, information tables
(e.g., foo.o for MIPS)

• Output: Executable Code
(e.g., a.out for MIPS)

• Combines several object (.o) files into
a single executable (“linking”)

• Enable Separate Compilation of files
• Changes to one file do not require
recompilation of whole program

- Windows NT source is >40 M lines of code!

• Link Editor name from editing the “links”
in jump and link instructions

CS 61C L12 CALL (26) A Carle, Summer 2005 © UCB

Link Editor/Linker (2/3)
.o file 1
text 1
data 1
info 1

.o file 2
text 2
data 2
info 2

Linker

a.out
Relocated text 1
Relocated text 2
Relocated data 1
Relocated data 2

CS 61C L12 CALL (27) A Carle, Summer 2005 © UCB

Link Editor/Linker (3/3)

• Step 1: Take text segment from each
.o file and put them together.

• Step 2: Take data segment from each
.o file, put them together, and
concatenate this onto end of text
segments.

• Step 3: Resolve References
• Go through Relocation Table and handle
each entry

• That is, fill in all absolute addresses

CS 61C L12 CALL (28) A Carle, Summer 2005 © UCB

Resolving References (1/2)

• Linker assumes first word of first text
segment is at address 0x00000000.

• Linker knows:
• length of each text and data segment
• ordering of text and data segments

• Linker calculates:
• absolute address of each label to be
jumped to (internal or external) and each
piece of data being referenced

CS 61C L12 CALL (29) A Carle, Summer 2005 © UCB

Resolving References (2/2)

• To resolve references:
• search for reference (data or label) in all
symbol tables

• if not found, search library files
(for example, for printf)

• once absolute address is determined, fill
in the machine code appropriately

• Output of linker: executable file
containing text and data (plus header)

CS 61C L12 CALL (30) A Carle, Summer 2005 © UCB

Where Are We Now?
C program: foo.c

Assembly program: foo.s

Executable(mach lang pgm): a.out

Compiler

Assembler

Linker

Loader
Memory

Object(mach lang module): foo.o

lib.o

CS 61C L12 CALL (31) A Carle, Summer 2005 © UCB

Loader (1/3)

• Input: Executable Code
(e.g., a.out for MIPS)

• Output: (program is run)
• Executable files are stored on disk.
• When one is run, loader’s job is to
load it into memory and start it
running.

• In reality, loader is the operating
system (OS)

• loading is one of the OS tasks
CS 61C L12 CALL (32) A Carle, Summer 2005 © UCB

Loader (2/3)
• So what does a loader do?
• Reads executable file’s header to
determine size of text and data
segments

• Creates new address space for
program large enough to hold text and
data segments, along with a stack
segment

• Copies instructions and data from
executable file into the new address
space (this may be anywhere in
memory)

CS 61C L12 CALL (33) A Carle, Summer 2005 © UCB

Loader (3/3)

• Copies arguments passed to the
program onto the stack

• Initializes machine registers
• Most registers cleared, but stack pointer
assigned address of 1st free stack
location

• Jumps to start-up routine that copies
program’s arguments from stack to
registers and sets the PC

• If main routine returns, start-up routine
terminates program with the exit system
call

CS 61C L12 CALL (44) A Carle, Summer 2005 © UCB

Peer Instruction 2

Which of the following instr. may
need to be edited during link phase?

Loop: lui $at, 0xABCD
ori $a0,$at, 0xFEDC
jal add_link # B
bne $a0,$v0, Loop # C

A}

CS 61C L12 CALL (46) A Carle, Summer 2005 © UCB

Things to Remember (2/3)

• Compiler converts a single HLL file
into a single assembly language file.

• Assembler removes
pseudoinstructions, converts what it
can to machine language, and creates
a checklist for the linker (relocation
table). This changes each .s file into a
.o file.

• Linker combines several .o files and
resolves absolute addresses.

• Loader loads executable into memory
and begins execution.

CS 61C L12 CALL (47) A Carle, Summer 2005 © UCB

Things to Remember 3/3
• Stored Program concept mean
instructions just like data, so can take data
from storage, and keep transforming it
until load registers and jump to routine to
begin execution
• Compiler ⇒ Assembler ⇒ Linker (⇒ Loader)

• Assembler does 2 passes to resolve
addresses, handling internal forward
references

• Linker enables separate compilation,
libraries that need not be compiled, and
resolves remaining addresses

