inst.eecs.berkeley.edu/~cs61c/su05

CS61C : Machine Structures

Lecture #13: Combinational Logic & Gates

2004-07-12

Andy Carle

Below the Program
» High-level language program (in C)

swap int v[], int k){
int temp; C compiler
temp = v[k]; @

Vv[K] = v[k+1];
v[k+1] = temp;

}
» Assembly language program (for MIPS)
swap: sl $2, $5, 2
Iw $16, 4($2)
sw $16, 0($2) "
sw $15, 4($2)
jr $31
»Machine (object) code (for MIPS)
000000 00000 00101 0001000010000000 2

add $2, $4,%$2
I@OOOOO 00100 00010 0001000000100000 . . .

Iw $15, 0($2)
cseicLs Logic)

A Carle, Summer 2005 9 uca|

What are “Machine Structures”?

Application (Netscape)

Operating
lm C.System . [T

61C

|

:

Digital Design

Circuit Design
[transistors |

Coordination of many levels of abstraction

We’ll investigate lower abstraction layers!
(contract between HW & SW)

Digital Design Basics (1/2)

*Next 3 weeks: we’ll study how a
modern processor is built starting with
basic logic elements as building
blocks.

*Why study logic design?

« Understand what processors can do fast
and what they can’t do fast (avoid slow
things if you want your code to run fast!)

* Background for more detailed hardware
courses (CS 150, CS 152)

Physical Hardware - PowerPC 750

A SR TTTTTITIT) AR A A1 BB

i Instruction|Cache

U PR L. 11151 PP PSPYPTSPTSPTYPSTIPININITLL 1L L4 LILTRV: RO

I@ gssicLt inational Logic (4)

A Carle, Summer 2005

uca|

Digital Design Basics (2/2)

*ISA is very important abstraction layer
» Contract between HW and SW
«Can you peek across abstraction?
«Can you depend “across abstraction”?

«Voltages are analog, quantized to 0/1
« Circuit delays are fact of life

*Two types
« Stateless Combinational Logic (&,],~)
« State circuits (e.g., registers)

Outline

*Truth Tables

* Transistors

*Logic Gates

* Combinational Logic
*Boolean Algebra

TT (2/6) Ex #1: 1 iff one (not both) a,b=1

A 2o ol
_ao o
o-\—\o‘~<

@ CSEICLI3 Logic(9)

A Carle, Summer 2005 o ucs]

TT (4/6): Ex #3: 32-bit unsigned adder
A B |C

Truth Tables (1/6)

e
o
o

(=%

—_—— D =D O —-0 D= —=0ce

y

-0 OO0 O

F(0,0,0,0)
F(0.00,1)
F(0.0,1.0)
F(0,0,1,1)
F(0,1,00)
F(0,1,0,1)
F(0,1,1,0)
F(0,1,1,1)
F(1,0,0,0)
F(1,0.0,1)
F(1,0,1,0)
F(10,1,1)
F(1,1,0,0)
F(1,1,0,1)
F(1,1,1,0)
F(1,1,1.1)

[=]

a
[

C — F
. —

—

- - N - W - ey _ Yy
e D O e D e D e O O e

>
o

TT (3/6): Example #2: 2-bit adder

A B |C

A 6 ajag by | caepeg
00 00 | 000
00 01 | 001
(U1} 10 | 010
00 11 |.e11
o1 00 | 001
01 01 | 010
01 10 | 011
01 11 | 100
10 00 | 010
10 01 | 011

10 10 | 100
10 11 101

11 00 | 011
11 01 | 100
1 10 | 101

1 11 | 110

A Carle, Summer 2005 o ucs]

000 ...0 000 ...0
000 ...0 000 ... 1

1.1 111..1

000 ... 00
000 ... 01

111 ... 10

TT (5/6): Conversion: 3-input majority
a b cly
0 0 010
0 0 110
0O 1 0/0
0 1 1|1
1 0 0]0
1 0 1]1
1 1 01
@ 1 1 1]1

TT (6/6): Conversion: 3-input majority

a b cly

0 0 00

0O 0 110

0O 1 0|0 *

0 1 1|1 b

1 0 0]0 K
1 0 1]1 C

1 1 0]1

I 1T 1]1

@ CssicLt

Transistors (2/3)

CMOSFET Transistors:

* have delay and require power

= * can be combined to perform
& "‘ logical operations and maintain
state.
b _H - logical operations will be
l our starting point for digital
design

- state tomorrow

Logic (15) A Carle, Summer 2005 © ucs)

Logic Gates (1/4)

* Transistors are too low level
* Good for measuring performance, power.
* Bad for logical design / analysis

* Gates are collections of transistors
wired in a certain way

«Can represent and reason about gates with
truth tables and Boolean algebra

*We will mainly review the concepts of truth
tables and Boolean algebra in this class. It
is assumed that you’ve seen these before.

«» Section B.2 in the textbook has a review

CS6ICLI3 Logic(I7) Acar

Transistors (1/3)

CMOSFET Transistors:
* Physically exist!

* Voltages are quantized

o
a _‘ *Only 2 Types:
- P-channel:
0 on gate -> pull up (1)
L _H - N-channel:
l 1 on gate -> pull down (0)

* Undriven otherwise.

ional Logic (14) Acarle,

Transistors (3/3): CMOS > Nand

= NAND <

ional Logic (16) A Carle, Summer 2005

ucs|

Logic Gates (2/4)

ah |
I:' :'l'_h‘\— C o0 | i
Sl = (T
10 | D

2, _,D_ ab | ¢

- T

R s |1
|1

111

-a...n_{:)o—b— alh

ROT o1

1|0
cseicl Logic (18) Acarie

ARD

Logic Gates (3/4)

AND Gate
Symbol Definition

-))° AB

- -0 O
_ =0

Boolean Algebra (1/7)

*George Boole, 19t Century
mathematician

*Developed a mathematical system
galgebra) |nvoIV|ng, logic, later known as
‘Boolean Algebra

* Primitive functions: AND, OR and NOT

*The power of BA is there’s a one-to-one
correspondence between circuits made
up of AND, OR and NOT gates and
equations in BA

@+ means OR,* means AND, x means NOT

cseicLt Logic 21) A Carle, Summer 2005 © ucs)

BA (3/7):Laws of Boolean Algebra

FiF=1 FoaFe=l Complamentarity
r-hmifl r41mli Lwa of s and 1%
£l =z FEREF et s
r-a r I+) EETipstirl ey
T T = ok DOty
gl F | TF Ix X -] AU raThy
i Pk FE F e o= [F b pllF 4 e stion
¥+ Fe+ylr=r unilieg s
g =F+E ETET ChbASrgan's Limw

Logic Gates (4/4)

\ jD—C_ 00 [0
XOR 01

i b e

b ‘—DO_‘ c 00 | 1
NAND 01

a ab |

b:D07C o
NOR 01
G

0

==
0 O = =

SO0 =0 O = =

BA (2/7): e.g., majority circuit

ac

)

y=aeb+acc+t+b-c

@ y=ab +ac+bc

A Carle, Summer 2005 o ucs]

BA (4/7): Circuit & Algebraic Simplification
BTN
) % u
= original circuit
1
y=((ab) +a) +¢ equation derived from original circuit
1
=abta+c algebraic simplification
=alb+1)+¢
=afl)+e
=a+c
!
c—D—y
simplified circuit

e
cseicl Logic 24) Acarle,

BA (5/7): Simplification Example

y =ab+a+c
= a(b+ 1) + ¢ distribution, identity
=a(l)+c law of I's
=a+c identity

BA (7/7): Canonical forms (2/2)

abe + abe + abe + abe

ab(¢+c) +ac(b+b) distribution
ab

ab

<
Il

(1) +ae(1) complementarity
+ ac identity

b

: b
@ a
g = i}D- Y

o
cserc it Logic 7).

A Carle, Summer 2005 o ucs]

Peer Instruction

A. (atb)* (atb)=b

B. N-input gates can be thought of as
cascaded 2-input gates. l.e.,
(aAbcAdAe)=aA(bcA(dAe))
where A is one of AND, OR, XOR,
NAND

C. You can use NOR(s) with clever
wiring to simulate AND, OR, &
NOT

BA (6/7): Canonical forms (1/2)
abe | Sum-of-products
d-b-F D001 (ORs of ANDs)
@b [HI |]
ol | o y = abe + dbc + abo + abd
onn | o
AL A 1 |1
1l | o
a-h-F 100]
101 | b

Combinational Logic

A combinational logic block is one in
which the output is a function only of
its current input.

* Combinational logic cannot have memory.
« Everything we’ve seen so far is CL

«CL will have delay (f(transistors))
- More later.

@c sic L. inational Logic (28)

A Carle, Summer 2005 o ucs]

“And In conclusion...”

*Use this table and techniques we
learned to transform from 1 to another

