inst.eecs.berkeley.edu/~cs6l1lc/su05

CS61C : Machine Structures

Lecture #13: Combinational Logic & Gates

2004-07-12

ﬂ CS 61C L13 Combinational Logic (1) A Carle, Summer 2005 © UCB

What are “Machine Structures”?

Application (Netscape)

Operating
Compiler System
(MacOS X)

Software

Assembler

struction Set
Architecture

Hardware | | Processor|Memory|1/O system

I Datapath & Control \
M | Digital Design |

Circuit Design
transistors

Coordination of many levels of abstraction

We'll investigate lower abstraction layers!
ﬂ (contract between HW & SW)

CS 61C L13 Combinational Logic (2) A Carle, Summer 2005 © UCB

Below the Program
* High-level language program (in C)

swap iInt v[], int k){
int temp;
temp = v[Kk];

vlk] = v[k+1];
v[k+1] = temp;

}
 Assembly language program (for MIPS)

swap: sll $2, $5, 2
add $2, $4,%$2
Iw $15, 0(%$2)

Iw $16, 4($2)
SW $16, 0($2) assembler |
S\ $15, 4($2)

jr $31

 Machine (object) code (for MIPS)

000000 00000 00101 0001000010000000 17

Q)OOOOO 00100 00010 0O001000000100000 . . . :
CS 61C L13 Combinational Logic (3) A Carle, Summer 2005 © UCB

Physical Hardware - PowerPC 750

SR NAAARRRTTTITTITIEALY AL SAGAMMABARARANY BB RSN 2441 11 TTITIITIAS

.‘; 1

DatajCache §igos4]

Inachhon
uequencer

Cd Instructloni Cache
(1, AP mmmmmnmmmmm

CS 61C L13 Combinational Logic (4) A Carle, Summer 2005 © UCB

Digital Design Basics (1/2)

* Next 3 weeks: we’ll study how a
modern processor is built starting with
basic logic elements as building
blocks.

 Why study logic design?

 Understand what processors can do fast
and what they can’t do fast (avoid slow
things if you want your code to run fast!)

 Background for more detailed hardware
courses (CS 150, CS 152)

ﬂ CS 61C L13 Combinational Logic (5) A Carle, Summer 2005© UCB

Digital Design Basics (2/2)

ISA is very important abstraction layer
e Contract between HW and SW

* Can you peek across abstraction?
 Can you depend “across abstraction”?

* Voltages are analog, quantized to 0/1
 Circuit delays are fact of life

 Two types
 Stateless Combinational Logic (&,],~)
 State circuits (e.g., registers)

ﬂ CS 61C L13 Combinational Logic (6) A Carle, Summer 2005© UCB

Outline

* Truth Tables

* Transistors

* Logic Gates

« Combinational Logic

 Boolean Algebra

ﬂ CS 61C L13 Combinational Logic (7) A Carle, Summer 2005 © UCB

Truth Tables (1/6)

y
F(0,0,0,0)
F(0,0,0,1)
F(0,0,1,0)
F(0,0,1,1)
F(0,1,0,0)
F(0,1,0,1)
F(0,1,1,0)
F(0,1,1,1)
F(1,0,0,0)
F(1,00,1)
F(1,0,1,0)
F(1,0,1,1)
F(1,1,0,0)
F(1,1,0,1)
F(1,1,1,0)
F(1,1,1,1)

Q CS 61C L13 Combinational Logic (8) A Carle, Summer 2005 © UCB

— e = e e = = = O O O OO O O O
bk ek pk ek D O O O b = OO O Ol
—_— O O = = OO == OO ~==QOCQC|o
—_O = O = O = O = O = O = O = COa

TT (2/6) Ex #1: 1 iff one (not both) a,b=1

- - O O

y
0
1
1
0

Q CS 61C L13 Combinational Logic (9)

TT (3/6): Example #2: 2-bit adder

A B | C

A B ai1aop blbo C2C1Cp

00 00 | 000

00 01 | 001

00 10 | 010

00 1T | 011

01 00 | 001

01 01 | 010

01 10 | 011

01 11 | 100

10 00 | 010

10 01 | OI1

10 10 | 100

10 11 | 101

. 11 00 | 011

11 01 | 100

C— 11 10 | 101

ﬂ 11 11 | 110

CS 61C L13 Combinational Logic (10) A Carle, Summer 2005 © UCB

TT (4/6): Ex #3: 32-bit unsigned adder

A B C
000 ... 0 000 ... 0 | 000 ... 00
000 ...0 000 ...1 | 000 ... Ol
I11...1 111..1 | 111 ...10

(9]
(7]
(2]
'S
(@]
-
-
w
o

TT (5/6): Conversion: 3-input majority

a b ¢

<

— e e —m OO OO

0
0
1
1
0
0
1
1

—_ = = O = O O O

0
1
0
1
0
1
0
1

TT (6/6): Conversion: 3-input majority

b
0O 0 0|0

y

l{,b

C

d

-
-
-

1

Transistors (1/3)

CMOSFET Transistors:

: :L * Physically exist!
p:
e ——4 ‘D_b

a ___ﬁ"’
\

* Voltages are quantized

*Only 2 Types:
- P-channel:
0 on gate -> pull up (1)
- N-channel:
1 on gate -> pull down (0)

- '

* Undriven otherwise.

ﬂ CS 61C L13 Combinational Logic (14) A Carle, Summer 2005 © UCB

Transistors (2/3)

1 CMOSFET Transistors:

o ___C‘ [F‘b | * have delay and require power
C

* can be combined to perform

“ ‘""\ logical operations and maintain
state.
¥ 4\ | - logical operations will be
l, our starting point for digital
design

- state tomorrow

ﬂ CS 61C L13 Combinational Logic (15) A Carle, Summer 2005 © UCB

Transistors (3/3): CMOS = Nand

A

=

xq\l A
0

0

1

1

Q CS 61C L13 Combinational Logic (16)

— NAND +—¢

A Carle, Summer 2005© UCB

Logic Gates (1/4)

* Transistors are too low level
* Good for measuring performance, power.
* Bad for logical design / analysis

» Gates are collections of transistors
wired in a certain way

e Can represent and reason about gates with
truth tables and Boolean algebra

 We will mainly review the concepts of truth
tables and Boolean algebra in this class. It
is assumed that you’ve seen these before.

Q e Section B.2 in the textbook has a review

CS 61C L13 Combinational Logic (17) A Carle, Summer 20050 UCB

Logic Gates (2/4)

s D
AND b —

ﬂ CS 61C L13 Combinational Logic (18)

ab

00
01
10
11

ab

00
01
10
11

— == OO = OO OO0

-y <

A

Carle, Summer 2005© UCB

Logic Gates (3/4)

AND Gate
Symbol Definition

D)

Q CS 61C L13 Combinational Logic (19)

A B
00
0 1
10
1 1

Logic Gates (4/4)

XOR Cb\ jD— -
o —
NAND B ‘—DD_~C

NOR 3:
Q CS 61C L13 Combinational Logic (20)

ab

00
01
10
11

ab

00
01
10
11

ab

00
01
10
11

O O O =0 O = =0 O M= QOO0

A Carle, Summer 2005 © UCB

Boolean Algebra (1/7)

* George Boole, 19" Century
mathematician

* Developed a mathematical system
galgebra) involving logic, later known as
‘Boolean Algebra”

* Primitive functions: AND, OR and NOT

* The power of BA is there’s a one-to-one
correspondence between circuits made

up of AND, OR and NOT gates and
equations in BA

ﬂ + means OR,*» means AND, x means NOT

CS 61C L13 Combinational Logic (21) A Carle, Summer 20050 UCB

BA (2/7): e.g., majority circuit

=T
b

L)—w

D—D—y

iy

y=acb+aesc+bec

Q y =ab +ac + bc
CS 61C L13 Combinational Logic (22)

A Carle, Summer 2005© UCB

BA (3/7):Laws of Boolean Algebra

r-xT=~0 r+T=1 complementarity

z-0=0 r+1=1 laws of O’s and 1’s

r-l==x r+0==zx identities

T-T=1 rt+zr==2x idempotent law
T-yYy=1y-x cT+y=y+=zx commutativity

(zy)z = z(y2) (r+y)+2z=x+(y+2) associativity
rly+z)=zy+zz z+yz=(rx+y)(x+z) distribution
Ty +r =2 (z+ylz==x uniting theorem
T Y=T+7Y (z+y)=Z % DeMorgan’s Law

ﬂ CS 61C L13 Combinational Logic (23) A Carle, Summer 2005 © UCB

BA (4/7): Circuit & Algebraic Simplification

—_—

b
e Dg
!

y = ((ab) +a) + c equation derived from original circuit

!

=ab+a+c algebraic simplification
=ab+1)+c
=a(l)+c
=a-+c
!

@ >
& ——-—D’—B
simplified circuit

Q
CS 61C L13 Combinational Logic (24) A Carle, Summer 2005 © UCB

original circuit

BA (5/7): Simplification Example

ab+ a+c

a(b+ 1) + ¢ distribution, identity
a(l) 4 c law of 1’s

a—+c identity

IS
|

Q CS 61C L13 Combinational Logic (25) A Carle, Summer 2005© UCB

BA (6/7): Canonical forms (1/2)

Sum-of-products
(ORs of ANDs)

abc
000
¢ 001
010
011
a-b-¢ 100
101

a-b-c 110
111

ﬂ CS 61C L13 Combinational Logic (26) A Carle, Summer 2005© UCB

]
Sl
ol

]

y = abc + abc + abe + abe

O = O = O QO == =

BA (7/7): Canonical forms (2/2)

y = abc+ abc + abc + abe
= ab(c+c¢) +ac(b+b) distribution
= ab(1) + ac(1) complementarity
— ab + ac identity

e
LH]
i

byf——

CS 61C L13 Combinational Logic (27) A Carle, Summer 20050 UCB

~

Combinational Logic

A combinational logic block is one in
which the output is a function only of
its current input.

 Combinational logic cannot have memory.
* Everything we’ve seen so far is CL

 CL will have delay (f(transistors))
- More later.

Q CS 61C L13 Combinational Logic (28) A Carle, Summer 2005© UCB

Peer Instruction

A. (a+b)s (a+b) = b

B. N-input gates can be thought of as
cascaded 2-input gates. l.e.,
(@AbcAdAe)=aA(bcA(dAe)
where A is one of AND, OR, XOR,
NAND

C. You can use NOR(s) with clever
wiring to simulate AND, OR, &
NOT

Q CS 61C L13 Combinational Logic (29) A Carle, Summer 2005© UCB

“And In conclusion...”

* Use this table and techniques we
learned to transform from 1 to another

Q CS 61C L13 Combinational Logic (30) A Carle, Summer 20050 UCB

