

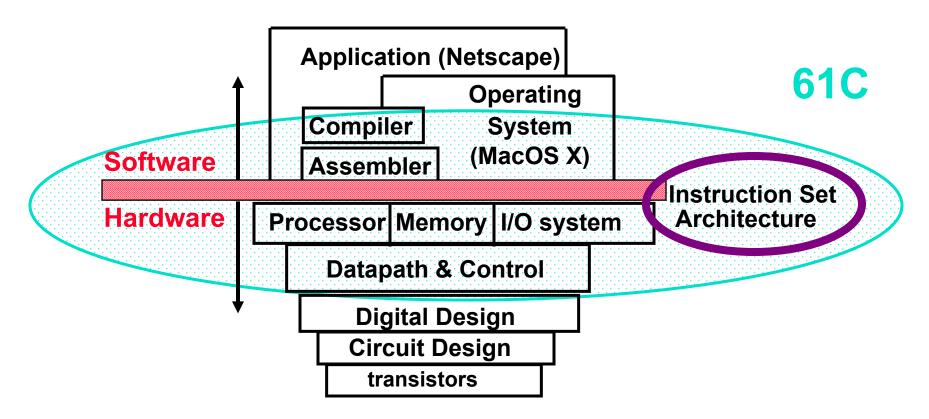
Lecture #13: Combinational Logic & Gates

2004-07-12

Andy Carle

CS 61C L13 Combinational Logic (1)

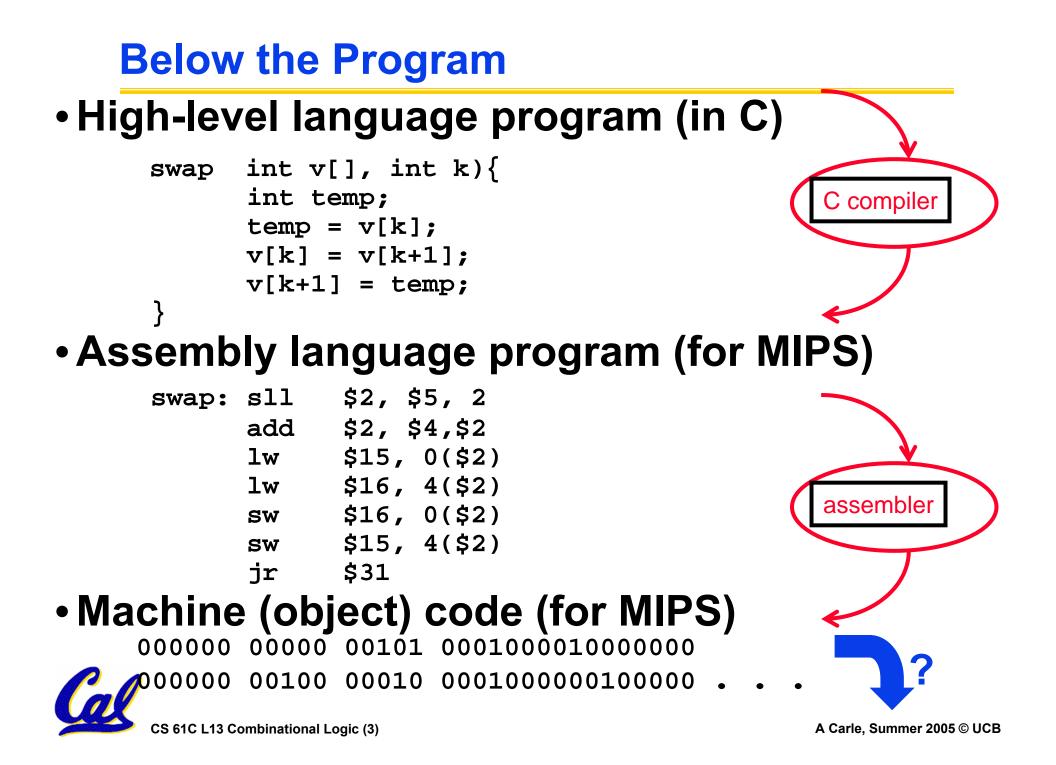
What are "Machine Structures"?



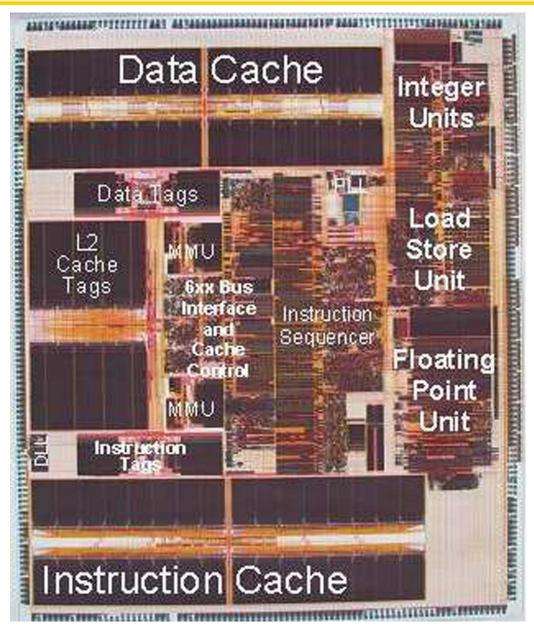
Coordination of many *levels of abstraction*

We'll investigate lower abstraction layers! (contract between HW & SW)

CS 61C L13 Combinational Logic (2)



Physical Hardware - PowerPC 750



Digital Design Basics (1/2)

- Next 3 weeks: we'll study how a modern processor is built starting with basic logic elements as building blocks.
- Why study logic design?
 - Understand what processors can do fast and what they can't do fast (avoid slow things if you want your code to run fast!)
 - Background for more detailed hardware courses (CS 150, CS 152)

Digital Design Basics (2/2)

- ISA is very important abstraction layer
 - Contract between HW and SW
 - Can you peek across abstraction?
 - Can you depend "across abstraction"?
- Voltages are analog, quantized to 0/1
- Circuit delays are fact of life
- Two types
 - Stateless Combinational Logic (&,|,~)
 - State circuits (e.g., registers)

Outline

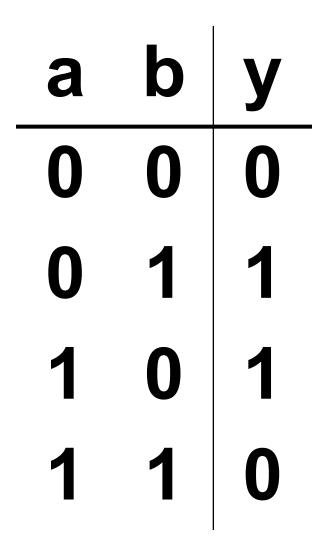
- Truth Tables
- Transistors
- Logic Gates
- Combinational Logic
- Boolean Algebra

Truth Tables (1/6)

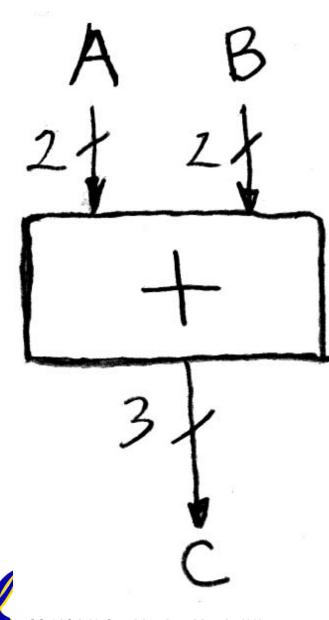
		a	b	С	d	у
	_	0	0	0	0	F(0,0,0,0)
		0	0	0	1	F(0,0,0,1)
		0	0	1	0	F(0,0,1,0)
		0	0	1	1	F(0,0,1,1)
a		0	1	0	0	F(0,1,0,0)
		0	1	0	1	F(0,1,0,1)
		0	1	1	0	F(0,1,1,0)
C	$\widetilde{\langle}$	0	1	1	1	F(0,1,1,1)
	~	1	0	0	0	F(1,0,0,0)
$d \rightarrow 1$		1	0	0	1	F(1,0,0,1)
		1	0	1	0	F(1,0,1,0)
		1	0	1	1	F(1,0,1,1)
		1	1	0	0	F(1,1,0,0)
		1	1	0	1	F(1,1,0,1)
		1	1	1	0	F(1,1,1,0)
		1	1	1	1	F(1,1,1,1)

CS 61C L13 Combinational Logic (8)

TT (2/6) Ex #1: 1 iff one (not both) a,b=1

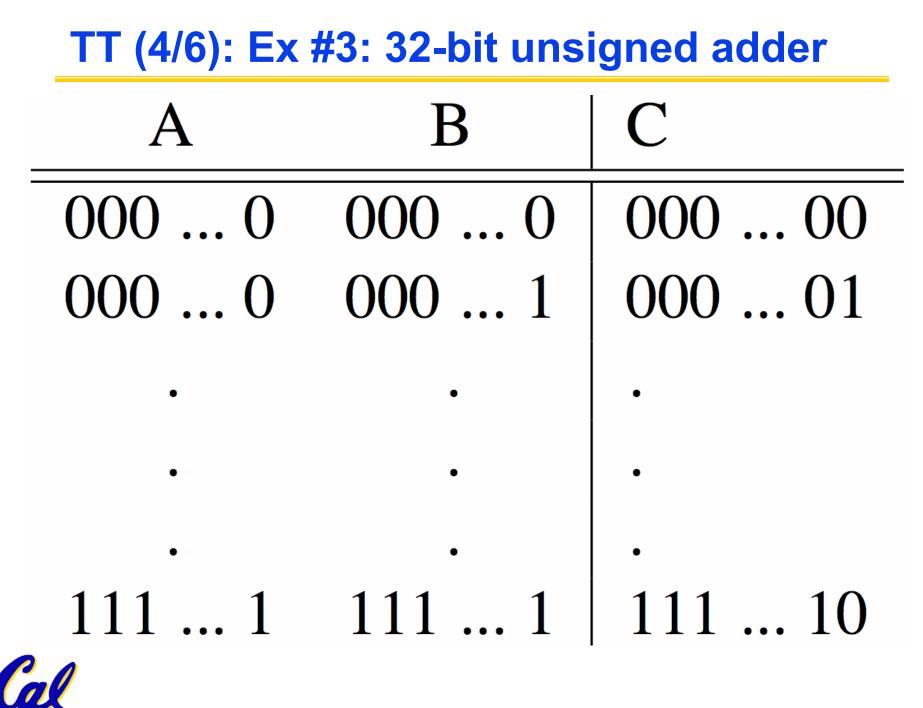


TT (3/6): Example #2: 2-bit adder



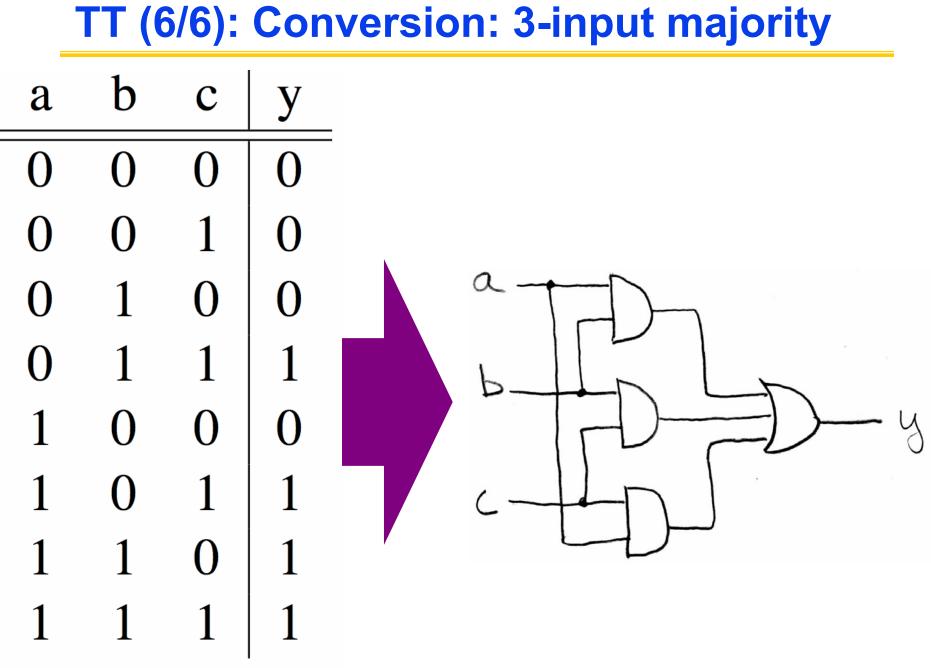
А	В	C
a_1a_0	b_1b_0	$c_2 c_1 c_0$
00	00	000
00	01	001
00	10	010
00	11	011
01	00	001
01	01	010
01	10	011
01	11	100
10	00	010
10	01	011
10	10	100
10	11	101
11	00	011
11	01	100
11	10	101
11	11	110

CS 61C L13 Combinational Logic (10)

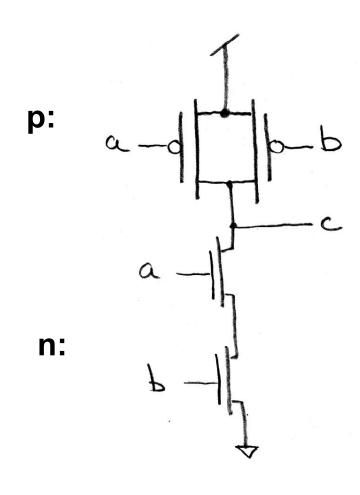


TT (5/6): Conversion: 3-input majority

a	b	C	У
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1



Transistors (1/3)

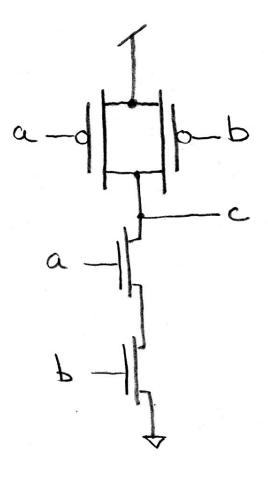


CMOSFET Transistors:

- * Physically exist!
- * Voltages are quantized
- * Only 2 Types:
 - P-channel:
 - 0 on gate -> pull up (1)
- N-channel:
 - 1 on gate -> pull down (0)

* Undriven otherwise.

Transistors (2/3)



CMOSFET Transistors:

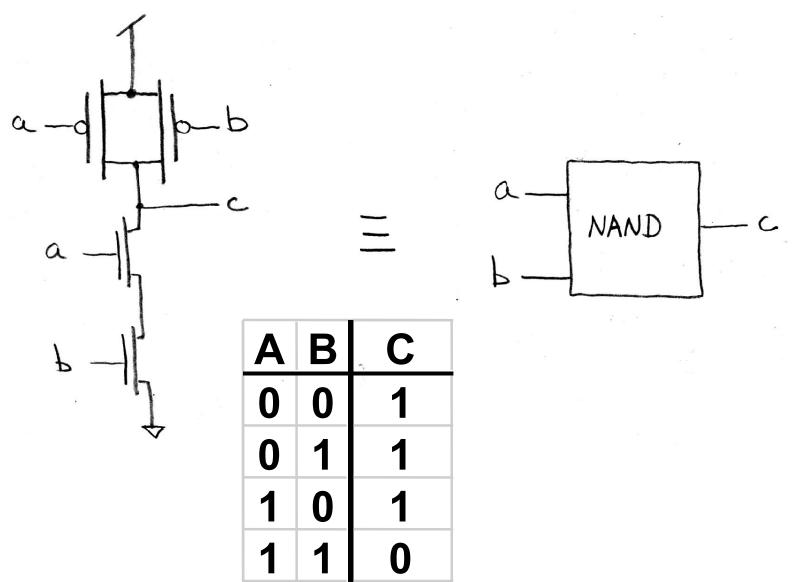
* have delay and require power

* can be combined to perform logical operations and maintain state.

- logical operations will be our starting point for digital design

- state tomorrow

Transistors (3/3): CMOS -> Nand



Logic Gates (1/4)

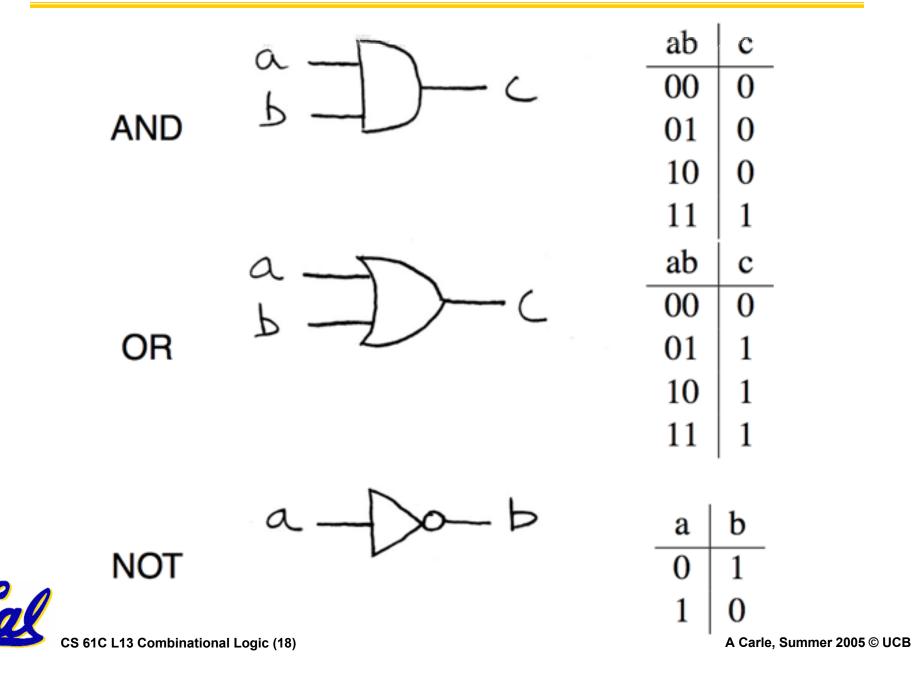
- Transistors are too low level
 - Good for measuring performance, power.
 - Bad for logical design / analysis

- Gates are collections of transistors wired in a certain way
 - Can represent and reason about gates with truth tables and Boolean algebra
 - We will mainly review the concepts of truth tables and Boolean algebra in this class. It is assumed that you've seen these before.

Section B.2 in the textbook has a review

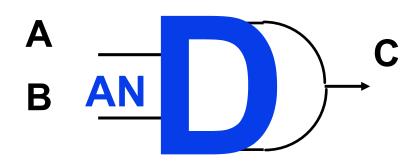
CS 61C L13 Combinational Logic (17)

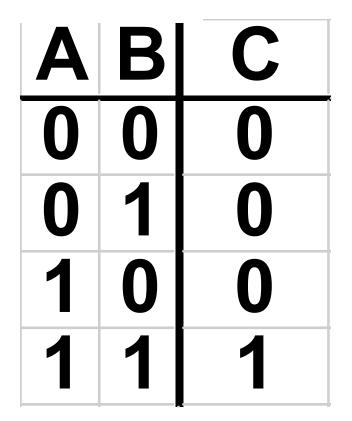
Logic Gates (2/4)



AND Gate

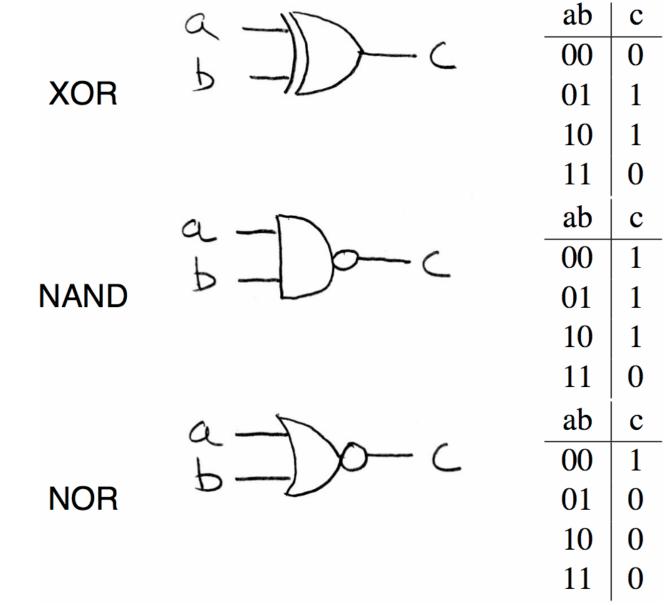
Definition





CS 61C L13 Combinational Logic (19)

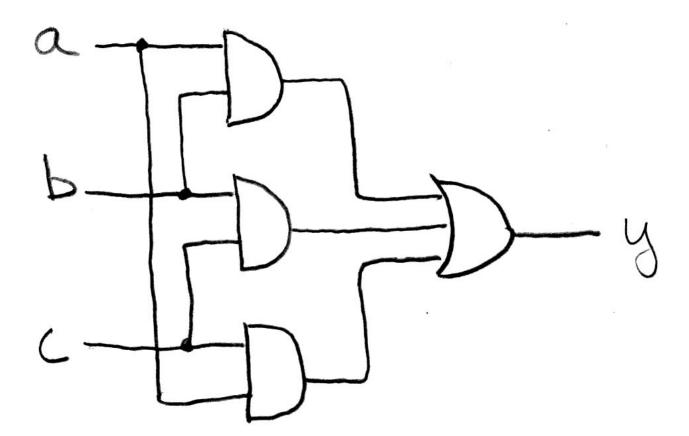
Logic Gates (4/4)



Boolean Algebra (1/7)

- George Boole, 19th Century mathematician
- Developed a mathematical system (algebra) involving logic, later known as "Boolean Algebra"
- Primitive functions: AND, OR and NOT
- The power of BA is there's a one-to-one correspondence between circuits made up of AND, OR and NOT gates and equations in BA

BA (2/7): e.g., majority circuit



 $y = a \cdot b + a \cdot c + b \cdot c$

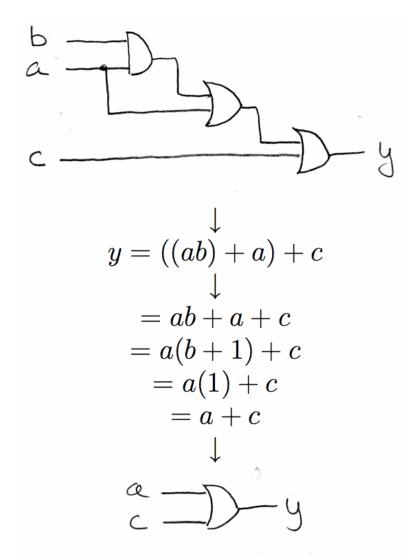
y = ab + ac + bc

BA (3/7):Laws of Boolean Algebra

$x\cdot \overline{x}=0$	$x + \overline{x} = 1$
$x \cdot 0 = 0$	x + 1 = 1
$x \cdot 1 = x$	x + 0 = x
$x \cdot x = x$	x + x = x
$x \cdot y = y \cdot x$	x + y = y + x
(xy)z = x(yz)	(x+y) + z = x + (y+z)
x(y+z) = xy + xz	x + yz = (x + y)(x + z)
xy + x = x	(x+y)x = x
$\overline{x\cdot y}=\overline{x}+\overline{y}$	$\overline{(x+y)} = \overline{x} \cdot \overline{y}$

complementarity laws of 0's and 1's identities idempotent law commutativity associativity distribution uniting theorem DeMorgan's Law

BA (4/7): Circuit & Algebraic Simplification



original circuit

equation derived from original circuit

algebraic simplification

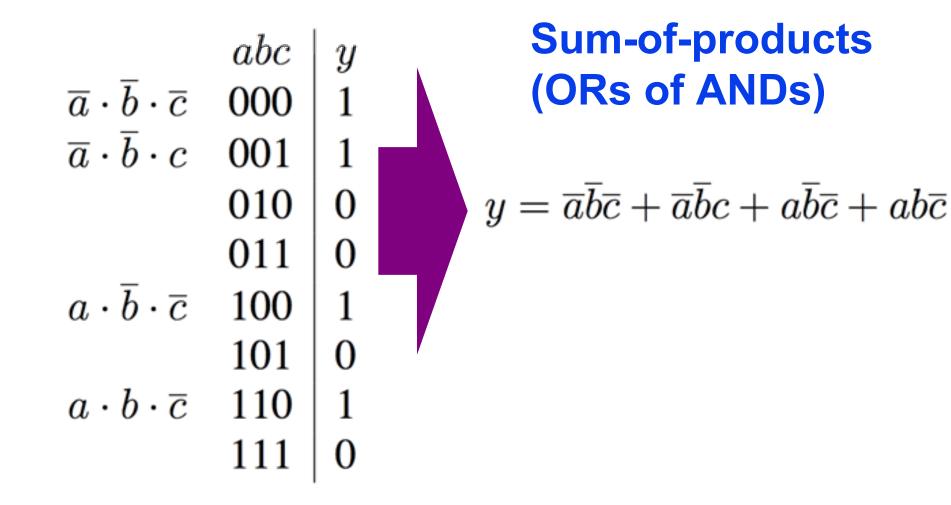
simplified circuit

BA (5/7): Simplification Example

$$y = ab + a + c$$

= $a(b+1) + c$ distribution, identity
= $a(1) + c$ law of 1's
= $a + c$ identity

BA (6/7): Canonical forms (1/2)



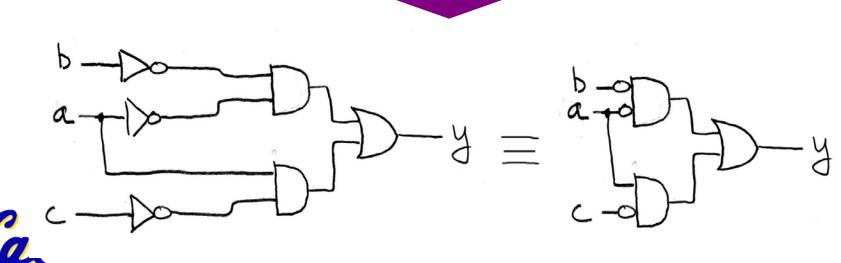
BA (7/7): Canonical forms (2/2)

$$y = \overline{a}\overline{b}\overline{c} + \overline{a}\overline{b}c + a\overline{b}\overline{c} + ab\overline{c}$$

$$= \overline{a}\overline{b}(\overline{c} + c) + a\overline{c}(\overline{b} + b) \quad distribution$$

$$= \overline{a}\overline{b}(1) + a\overline{c}(1) \quad complementarity$$

$$= \overline{a}\overline{b} + a\overline{c} \quad identity$$



CS 61C L13 Combinational Logic (27)

Combinational Logic

A *combinational* logic block is one in which the output is a function only of its current input.

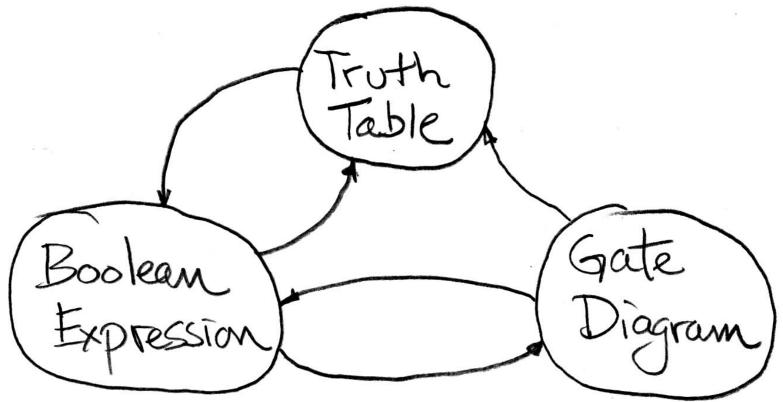
- Combinational logic cannot have memory.
- Everything we've seen so far is CL
- CL will have delay (f(transistors))
 - More later.

- A. $(a+b) \cdot (a+b) = b$
- **B.** N-input gates can be thought of as cascaded 2-input gates. I.e., $(a \land bc \land d \land e) = a \land (bc \land (d \land e))$ where Δ is one of AND, OR, XOR, NAND
- C. You can use NOR(s) with clever wiring to simulate AND, OR, & NOT

61C L13 Combinational Logic (29)

"And In conclusion..."

• Use this table and techniques we learned to transform from 1 to another



CS 61C L13 Combinational Logic (30)