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CS61C : Machine Structures

Lecture #13: Combinational Logic & Gates

2004-07-12
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What are “Machine Structures”?

Application (Netscape)

Operating
Compiler System
(MacOS X)

Software

Assembler

struction Set
Architecture

Hardware | | Processor|Memory|1/O system

I Datapath & Control \
M | Digital Design |

Circuit Design
transistors

Coordination of many levels of abstraction

We'll investigate lower abstraction layers!
ﬂ (contract between HW & SW)
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Below the Program
* High-level language program (in C)

swap iInt v[], int k){
int temp;
temp = v[Kk];

vlk] = v[k+1];
v[k+1] = temp;

}
 Assembly language program (for MIPS)

swap: sll $2, $5, 2
add $2, $4,%$2
Iw $15, 0(%$2)

Iw $16, 4($2)
SW $16, 0($2) assembler |
S\ $15, 4($2)

jr $31

 Machine (object) code (for MIPS)

000000 00000 00101 0001000010000000 17

Q)OOOOO 00100 00010 0O001000000100000 . . . :
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Digital Design Basics (1/2)

* Next 3 weeks: we’ll study how a
modern processor is built starting with
basic logic elements as building
blocks.

 Why study logic design?

 Understand what processors can do fast
and what they can’t do fast (avoid slow
things if you want your code to run fast!)

 Background for more detailed hardware
courses (CS 150, CS 152)
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Digital Design Basics (2/2)

ISA is very important abstraction layer
e Contract between HW and SW

* Can you peek across abstraction?
 Can you depend “across abstraction”?

* Voltages are analog, quantized to 0/1
 Circuit delays are fact of life

 Two types
 Stateless Combinational Logic (&,],~)
 State circuits (e.g., registers)
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Outline

* Truth Tables

* Transistors

* Logic Gates

« Combinational Logic

 Boolean Algebra
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Truth Tables (1/6)

y
F(0,0,0,0)
F(0,0,0,1)
F(0,0,1,0)
F(0,0,1,1)
F(0,1,0,0)
F(0,1,0,1)
F(0,1,1,0)
F(0,1,1,1)
F(1,0,0,0)
F(1,00,1)
F(1,0,1,0)
F(1,0,1,1)
F(1,1,0,0)
F(1,1,0,1)
F(1,1,1,0)
F(1,1,1,1)
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TT (2/6) Ex #1: 1 iff one (not both) a,b=1

- - O O

y
0
1
1
0
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TT (3/6): Example #2: 2-bit adder

A B | C

A B ai1aop blbo C2C1Cp

00 00 | 000

00 01 | 001

00 10 | 010

00 1T | 011

01 00 | 001

01 01 | 010

01 10 | 011

01 11 | 100

10 00 | 010

10 01 | OI1

10 10 | 100

10 11 | 101

. 11 00 | 011

11 01 | 100

C— 11 10 | 101

ﬂ 11 11 | 110
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TT (4/6): Ex #3: 32-bit unsigned adder

A B C
000 ... 0 000 ... 0 | 000 ... 00
000 ...0 000 ...1 | 000 ... Ol
I11...1 111..1 | 111 ...10




(9]
(7]
(2]
'S
(@]
-
-
w
o

TT (5/6): Conversion: 3-input majority

a b ¢

<

— e e —m OO OO

0
0
1
1
0
0
1
1

—_ = = O = O O O

0
1
0
1
0
1
0
1



TT (6/6): Conversion: 3-input majority

b
0O 0 0|0

y

l{,b

C

d

-
-
-

1




Transistors (1/3)

CMOSFET Transistors:

: :L * Physically exist!
p:
e ——4 ‘D_b

a ___ﬁ"’
\

* Voltages are quantized

*Only 2 Types:
- P-channel:
0 on gate -> pull up (1)
- N-channel:
1 on gate -> pull down (0)

- '

* Undriven otherwise.
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Transistors (2/3)

1 CMOSFET Transistors:

o ___C‘ [ F‘b | * have delay and require power
C

* can be combined to perform

“ ‘""\ logical operations and maintain
state.
¥ 4\ | - logical operations will be
l, our starting point for digital
design

- state tomorrow
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Transistors (3/3): CMOS = Nand

A

=

xq\l A
0

0

1

1
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Logic Gates (1/4)

* Transistors are too low level
* Good for measuring performance, power.
* Bad for logical design / analysis

» Gates are collections of transistors
wired in a certain way

e Can represent and reason about gates with
truth tables and Boolean algebra

 We will mainly review the concepts of truth
tables and Boolean algebra in this class. It
is assumed that you’ve seen these before.

Q e Section B.2 in the textbook has a review
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Logic Gates (2/4)

s D
AND b —
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Logic Gates (3/4)

AND Gate
Symbol Definition

D)
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Logic Gates (4/4)

XOR Cb\ jD— -
o —
NAND B ‘—DD_~C

NOR 3:
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Boolean Algebra (1/7)

* George Boole, 19" Century
mathematician

* Developed a mathematical system
galgebra) involving logic, later known as
‘Boolean Algebra”

* Primitive functions: AND, OR and NOT

* The power of BA is there’s a one-to-one
correspondence between circuits made

up of AND, OR and NOT gates and
equations in BA

ﬂ + means OR,*» means AND, x means NOT
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BA (2/7): e.g., majority circuit

=T
b

L)—w

D—D—y

iy

y=acb+aesc+bec

Q y =ab +ac + bc
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BA (3/7):Laws of Boolean Algebra

r-xT=~0 r+T=1 complementarity

z-0=0 r+1=1 laws of O’s and 1’s

r-l==x r+0==zx identities

T-T=1 rt+zr==2x idempotent law
T-yYy=1y-x cT+y=y+=zx commutativity

(zy)z = z(y2) (r+y)+2z=x+(y+2) associativity
rly+z)=zy+zz z+yz=(rx+y)(x+z) distribution
Ty +r =2 (z+ylz==x uniting theorem
T Y=T+7Y (z+y)=Z % DeMorgan’s Law
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BA (4/7): Circuit & Algebraic Simplification

—_—

b
e Dg
!

y = ((ab) +a) + c equation derived from original circuit

!

=ab+a+c algebraic simplification
=ab+1)+c
=a(l)+c
=a-+c
!

@ >
& ——-—D’—B
simplified circuit

Q
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BA (5/7): Simplification Example

ab+ a+c

a(b+ 1) + ¢ distribution, identity
a(l) 4 c law of 1’s

a—+c identity

IS
|
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BA (6/7): Canonical forms (1/2)

Sum-of-products
(ORs of ANDs)

abc
000
¢ 001
010
011
a-b-¢ 100
101

a-b-c 110
111
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BA (7/7): Canonical forms (2/2)

y = abc+ abc + abc + abe
= ab(c+c¢) +ac(b+b) distribution
= ab(1) + ac(1) complementarity
— ab + ac identity

e
LH]
i

byf——
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Combinational Logic

A combinational logic block is one in
which the output is a function only of
its current input.

 Combinational logic cannot have memory.
* Everything we’ve seen so far is CL

 CL will have delay ( f(transistors) )
- More later.
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Peer Instruction

A. (a+b)s (a+b) = b

B. N-input gates can be thought of as
cascaded 2-input gates. l.e.,
(@AbcAdAe)=aA(bcA(dAe)
where A is one of AND, OR, XOR,
NAND

C. You can use NOR(s) with clever
wiring to simulate AND, OR, &
NOT
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“And In conclusion...”

* Use this table and techniques we
learned to transform from 1 to another
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