Inst.eecs.berkeley.edu/~cs61c/sul5

CS61C : Machine Structures

Lecture #15: Combinational Logic Blocks

2005-07-14

ﬂ CS 61C L15 Blocks (1) A Carle, Summer 2005 © UCB

Outline

e CL Blocks

e Latches & Flip Flops — A Closer Look

ﬂ CS 61C L15 Blocks (2) A Carle, Summer 2005 © UCB

Review (1/3)

e Use this table and techniques we
learned to transform from 1 to another

Q CS 61C L15 Blocks (3) A Carle, Summer 2005 © UCB

(2/3): Circuit & Algebraic Simplification

— e

b
e Dg
!

y = ((ab) +a) + c equation derived from original circuit

!

=ab+a+c algebraic simplification
=ab+1)+c
=a(l)+c
=a-+c
!

Q.
& ——-—D’—B
simplified circuit

Q
CS 61C L15 Blocks (4) A Carle, Summer 2005 © UCB

original circuit

(3/3):Laws of Boolean Algebra

8 8 8 8

8 = o §
|

8 B ©o

TyYy=y-x
(zy)z = x(y2)
r(y+z) =zy + x2
TY+r==x
T Y=I+y

ﬂ CS 61C L15 Blocks (5)

r+T=1
r+1=1
r+0==x
r+xr==x
r+y=y+zx

(z+y)+z=z+ (y+2)
r+yz=(x+y)(zr+ 2)
(r+y)xr==x
(z+y)=z-y

complementarity
laws of O’s and 1’s
identities
idempotent law
commutativity
associativity
distribution

uniting theorem
DeMorgan’s Law

A Carle, Summer 2005 © UCB

CL Blocks

elet’'s use our skills to build some CL
blocks:

* Multiplexer (mux)
* Adder
« ALU

ﬂ CS 61C L15 Blocks (6) A Carle, Summer 2005 © UCB

Data Multiplexor (here 2-to-1, n-bit-wide)

N instances of 1-bit-wide mux

3
|

ﬁI| || 1l

L'd'ﬁl | G

vl

7N
C
b
S
ab + 3ab + sab + sab
(ab+ ab) + s(ab + ab)
(b+ b)) + s((@a+ a)b)
(1) +s((1)b)
+ sb

(a
s(a

ocks (8)

ab

s O O O QO @w

00
01
10
11
00
01
10
11

—t O = O = = O OO

How do we build a 1-bit-wide mux?

sa -+ sb

ﬂ CS 61C L15 Blocks (9)

4-to-1 Multiplexor?

2 e = 38150a + 81800 + s15g9C + s180d

CS 61C L15 Blocks (10) A Carle, Summer 2005 © UCB

An Alternative Approach

%r
| Hierarchically!

Q CS 61C L15 Blocks (11) A Carle, Summer 2005 © UCB

Arithmetic and Logic Unit

* Most processors contain alogic block
called “Arithmetic/Logic Unit” (ALU)

*We'll show g_ou an easy one that does
ADD, SUB, bitwise AND, bitwise OR

AB
Sl hen S=00, R=A+B
nen S=01, R=A-B

\ ALV /—1,58
nen S=10, R=A AND B

I hen S=11, R=A OR B

Q CS 61C L15 Blocks (12) A Carle, Summer 2005 © UCB

S ==

Our simple ALU

Se — QM/5up+rac*J \ AND } [oR

ove.rQ\ouol L ‘ . BZL_;l {fraz

I
o \/ S\
3L

ﬂ CS 61C L15 Blocks (13) A Carle, Summer 2005 © UCB

Adder/Subtracter Design -- how?

» Truth-table, then * Look at breaking the

determine canonical problem down into
form, then minimize smaller pieces that
and implement as we can cascade or

we’'ve seen before hierarchically layer

ﬂ CS 61C L15 Blocks (14) A Carle, Summer 2005 © UCB

N 1-bit adders = 1 N-bit adder

by\rl A - | b, a, b0 o,

R C

SV*\ 5| gSo

ﬂ CS 61C L15 Blocks (15)

[T
G ~—{ ot + - 4+ —

Adder/Subtracter — One-bit adder LSB...

ap bo [So €1
+ by by by |bg O 1|1 O
Sz So S | Sp 1 0|1 O
1 10 1
S0 —
C1 —

ﬂ CS 61C L15 Blocks (16) A Carle, Summer 2005 © UCB

Adder/Subtracter — One-bit adder (1/2)...

a; b; C;i |8 Ciy
O 0 010 0
O 0 111 0
a3 4z | 41 | dp 0 1 0|1 O
+ bs by | by | Dby 0O 1 1[0 1
s3 Sz | 51 | So 1 0 0|1 0
1 0 110 1
1 1 0O01]0 1
I 1 1711 1
S; =
Civ1 —

ﬂ CS 61C L15 Blocks (17) A Carle, Summer 2005 © UCB

Adder/Subtracter — One-bit adder (2/2)...
O
be
Co

Civ1 = MAI(a;, b;, ¢;) = a;b; + a;c; + bic;

ﬂ CS 61C L15 Blocks (18)

A Carle, Summer 2005 © UCB

What about overflow?

e Consider a 2-bit signed # & overflow:

10 = -2 + -2 or -1 b a %%
e11 = -1 + -2 only |
=00 = 0 NOTHING! . 4 L+ & b—c,
01 = 1+ 1only © 1

Highest adder S So

«C, =Carry-in =C;,, C, = Carry-out =C
*No C,,; or C,, = NO overflow!
What.c. and C_,,, = NO overflow!

*C,,, butno C, = A,B both >0, overflow!
but no C,, = A,B both <0, overflow!

CS 61C L15 Blocks (19) A Carle, Summer 2005 © UCB

out

What about overflow?

e Consider a 2-bit signed # & overflow:

10 = -2 Doy g (e
11 = -1 i
00 = O B Co
01 = 1 Ce 1 2 i
e Qverflows when... 5, So

overflow = ¢,, XOR ¢,,_1

Q CS 61C L15 Blocks (20) A Carle, Summer 2005 © UCB

Extremely Clever Subtractor

b ey

Cn
? Sh -\
O\IQ\‘"P |ou)

ﬂ CS 61C L15 Blocks (21)

— SUR

A Carle, Summer 2005 © UCB

Administrivia

We’'re now halfway through the
semester... yikes
 HW 45 Due Monday

*Proj2 coming...

e Logisim!

Q CS 61C L15 Blocks (22) A Carle, Summer 2005 © UCB

State Circuits Overview

e State circuits have feedback, e.g.

N0 l»

Combi-
national
Logic

» outO

N1 T >

e Qutput is function of

Inputs + fed-back signals.

> Ooutl

 Feedback signals are the circuit's state.

 What aspects of this circuit might cause

complications?
Q CS 61C L15 Blocks (23)

A Carle, Summer 2005 © UCB

A simpler state circuit: two inverters

e TS S

\When started up, it's internally stable.

*Provide an or gate for coordination:

1 1 0 1
Jop—>o——>o—— 0
1
What's the result? How do we set to 0?

CS 61C L15 Blocks (24) A Carle, Summer 2005 © UCB

An R-S latch (cross-coupled NOR gates)

«S means “set” (to 1), Soar
R means “reset” (to 0). 010
100
0 0 — 1 0 110
S @ ‘>///DOO/{>C‘ Q
0 Hold!
R 0
 Adding Q’ gives standard RS-latch:
R Truth table
R sRQ
0 0 hold (keep value)
010
g 101

Q S 1 1 unstable
CS 61C L15 Blocks (25)

A Carle, Summer 2005 © UCB

An R-S latch (in detail)

Truth table

S R QO Q (t+At)
000 10 hold
001 01 hold
010 10 reset
A B NOR 01100 reset
001 10011
010 10101
100 1 10 xx unstable
Q! 110 1 11 xx unstable

]

A Carle, Summer 2005 © UCB

Controlling R-S latch with a clock

e Can't change R and S while clock is

active.
A B NOR
R' R
001 Q
010 clock — %
100 | o
110 S S

* Clocked latches are called flip-flops.

Q CS 61C L15 Blocks (27) A Carle, Summer 2005 © UCB

D flip-flop are what we really use
* Inputs C (clock) and D.

*When C is 1, latch open, output =D
(even If it changes, "transparent latch”)

\When C is 0, latch closed,
output = stored value.

C ®

C DAND
— Q

000
010
100 _
111 Q

D >—

Q CS 61C L15 Blocks (28) A Carle, Summer 2005 © UCB

D flip-flop detalls
\We don'’t like transparent latches

We can build them so that the latch Is
only open for an instant, on the risin
edge of a clock (as it goes from 0=1

C ®
-q D __| L
C [] [
— Q
D ——&— Q I L

Timing Diagram

Q CS 61C L15 Blocks (29) A Carle, Summer 2005 © UCB

Edge Detection

~ ~ 001

111
b

This is a “rising-edge D Flip-Flop”

 When the CLK transitions from 0 to 1 (rising
edge) ...

- Q €D Qbar € not D
e All other times: Q € Q; Qbar € Qbar

ﬂ CS 61C L15 Blocks (30)

A Carle, Summer 2005 © UCB

Peer Instruction

A. Truth table for mux with 4 control
signals has 24 rows

B. We could cascade N 1-bit shifters
to make 1 N-bit shifter for sll, sri

C. If 1-bit adder delay is T, the N-bit
adder delay would also be T

ﬂ CS 61C L15 Blocks (31) A Carle, Summer 2005 © UCB

“And In conclusion...”

e Use muxes to select among input
e S Input bits selects 2S inputs
e Each input can be n-bits wide, indep of S

 Implement muxes hierarchically

« ALU can be implemented using a mux

e« Coup

e N-bit ac

ed with basic bloc

K elements

der-subtractor o

one using N 1-

bit adders with XOR gates on input
 XOR serves as conditional inverter

ﬂ CS 61C L15 Blocks (32)

A Carle, Summer 2005 © UCB

