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CS61C : Machine Structures

Lecture #15: Combinational Logic Blocks
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Outline

e CL Blocks

e Latches & Flip Flops — A Closer Look
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Review (1/3)

e Use this table and techniques we
learned to transform from 1 to another
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(2/3): Circuit & Algebraic Simplification

— e

b
e Dg
!

y = ((ab) +a) + c equation derived from original circuit

!

=ab+a+c algebraic simplification
=ab+1)+c
=a(l)+c
=a-+c
!

Q.
& ——-—D’—B
simplified circuit

Q
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(3/3):Laws of Boolean Algebra

8 8 8 8

8 = o §
|

8 B ©o

TyYy=y-x
(zy)z = x(y2)
r(y+z) =zy + x2
TY+r==x
T Y=I+y
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r+T=1
r+1=1
r+0==x
r+xr==x
r+y=y+zx

(z+y)+z=z+ (y+2)
r+yz=(x+y)(zr+ 2)
(r+y)xr==x
(z+y)=z-y

complementarity
laws of O’s and 1’s
identities
idempotent law
commutativity
associativity
distribution

uniting theorem
DeMorgan’s Law
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CL Blocks

elet’'s use our skills to build some CL
blocks:

* Multiplexer (mux)
* Adder
« ALU
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Data Multiplexor (here 2-to-1, n-bit-wide)




N instances of 1-bit-wide mux
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How do we build a 1-bit-wide mux?

sa -+ sb
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4-to-1 Multiplexor?

2 e = 38150a + 81800 + s15g9C + s180d
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An Alternative Approach

%r
| Hierarchically!
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Arithmetic and Logic Unit

* Most processors contain alogic block
called “Arithmetic/Logic Unit” (ALU)

*We'll show g_ou an easy one that does
ADD, SUB, bitwise AND, bitwise OR

AB
Sl hen S=00, R=A+B
nen S=01, R=A-B

\ ALV /—1,58
nen S=10, R=A AND B

I hen S=11, R=A OR B
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Our simple ALU

Se — QM/5up+rac*J \ AND } [ oR

ove.rQ\ouol L ‘ . BZL_;l {fraz

I
o \/ S\
3L

ﬂ CS 61C L15 Blocks (13) A Carle, Summer 2005 © UCB



Adder/Subtracter Design -- how?

» Truth-table, then * Look at breaking the

determine canonical problem down into
form, then minimize  smaller pieces that
and implement as we can cascade or

we’'ve seen before hierarchically layer
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N 1-bit adders = 1 N-bit adder

by\rl A - | b, a, b0 o,

R C

SV\*\ 5| gSo
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Adder/Subtracter — One-bit adder LSB...

ap bo [ So €1
+ by by by |bg O 1|1 O
Sz So S | Sp 1 0|1 O
1 10 1
S0 —
C1 —
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Adder/Subtracter — One-bit adder (1/2)...

a; b; C;i |8 Ciy
O 0 010 0
O 0 111 0
a3 4z | 41 | dp 0 1 0|1 O
+ bs by | by | Dby 0O 1 1[0 1
s3 Sz | 51 | So 1 0 0|1 0
1 0 110 1
1 1 0O01]0 1
I 1 1711 1
S; =
Civ1 —
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Adder/Subtracter — One-bit adder (2/2)...
O
be
Co

Civ1 = MAI(a;, b;, ¢;) = a;b; + a;c; + bic;
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What about overflow?

e Consider a 2-bit signed # & overflow:

10 = -2 + -2 or -1 b a %%
e11 = -1 + -2 only |
=00 = 0 NOTHING! . 4 L+ & b—c,
01 = 1+ 1only © 1

Highest adder S So

«C, =Carry-in =C;,, C, = Carry-out =C
*No C,,; or C,, = NO overflow!
What.c. and C_,,, = NO overflow!

*C,,, butno C, = A,B both >0, overflow!
but no C,, = A,B both <0, overflow!
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What about overflow?

e Consider a 2-bit signed # & overflow:

10 = -2 Doy g (e
11 = -1 i
00 = O B Co
01 = 1 Ce 1 2 i
e Qverflows when... 5, So

overflow = ¢,, XOR ¢,,_1
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Extremely Clever Subtractor

b ey

Cn
? Sh -\
O\IQ\‘"P |ou)

ﬂ CS 61C L15 Blocks (21)

— SUR

A Carle, Summer 2005 © UCB



Administrivia

We’'re now halfway through the
semester... yikes
 HW 45 Due Monday

*Proj2 coming...

e Logisim!
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State Circuits Overview

e State circuits have feedback, e.g.

N0 l»

Combi-
national
Logic

» outO

N1 T >

e Qutput is function of

Inputs + fed-back signals.

> Ooutl

 Feedback signals are the circuit's state.

 What aspects of this circuit might cause

complications?
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A simpler state circuit: two inverters

e TS S

\When started up, it's internally stable.

*Provide an or gate for coordination:

1 1 0 1
Jop—>o——>o—— 0
1
What's the result? How do we set to 0?
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An R-S latch (cross-coupled NOR gates)

«S means “set” (to 1), Soar
R means “reset” (to 0). 010
100
0 0 — 1 0 110
S @ ‘>///DOO/{>C‘ Q
0 Hold!
R 0
 Adding Q’ gives standard RS-latch:
R Truth table
R sRQ
0 0 hold (keep value)
010
g 101

Q S 1 1 unstable
CS 61C L15 Blocks (25)
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An R-S latch (in detail)

Truth table

S R QO Q (t+At)
000 10 hold
001 01 hold
010 10 reset
A B NOR 01100 reset
001 10011
010 10101
100 1 10 xx unstable
Q! 110 1 11 xx unstable

]
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Controlling R-S latch with a clock

e Can't change R and S while clock is

active.
A B NOR
R' R
001 Q
010 clock — %
100 | o
110 S S

* Clocked latches are called flip-flops.
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D flip-flop are what we really use
* Inputs C (clock) and D.

*When C is 1, latch open, output =D
(even If it changes, "transparent latch”)

\When C is 0, latch closed,
output = stored value.

C ®

C DAND
— Q

000
010
100 _
111 Q

D >—
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D flip-flop detalls
\We don'’t like transparent latches

We can build them so that the latch Is
only open for an instant, on the risin
edge of a clock (as it goes from 0=1

C ®
-q D __| L
C [ ] [
— Q
D ——&— Q I L

Timing Diagram
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Edge Detection

~ ~ 001

111
b

This is a “rising-edge D Flip-Flop”

 When the CLK transitions from 0 to 1 (rising
edge) ...

- Q €D Qbar € not D
e All other times: Q € Q; Qbar € Qbar
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Peer Instruction

A. Truth table for mux with 4 control
signals has 24 rows

B. We could cascade N 1-bit shifters
to make 1 N-bit shifter for sll, sri

C. If 1-bit adder delay is T, the N-bit
adder delay would also be T
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“And In conclusion...”

e Use muxes to select among input
e S Input bits selects 2S inputs
e Each input can be n-bits wide, indep of S

 Implement muxes hierarchically

« ALU can be implemented using a mux

e« Coup

e N-bit ac

ed with basic bloc

K elements

der-subtractor o

one using N 1-

bit adders with XOR gates on input
 XOR serves as conditional inverter
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