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An Abstract View of the Critical Path
Critical Path (Load Operation) = 

Delay clock through PC (FFs) +
Instruction Memory’s Access Time +
Register File’s Access Time +
ALU to Perform a 32-bit Add +
Data Memory Access Time +
Stable Time for Register File Write
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• This affects 
how much you 
can overclock
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Improve Critical Path Improve Clock

• “Critical path” (longest path through logic) 
determines length of clock period

• To reduce clock period decrease path 
through CL by inserting State
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°5 steps to design a processor
• 1. Analyze instruction set => datapath requirements
• 2. Select set of datapath components & establish clock 

methodology
• 3. Assemble datapath meeting the requirements
• 4. Analyze implementation of each instruction to 

determine setting of control points that effects the 
register transfer.

• 5. Assemble the control logic
°Control is the hard part
°MIPS makes that easier

• Instructions same size
• Source registers always in same place
• Immediates same size, location
• Operations always on registers/immediates

Review: Single cycle datapath
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Review Datapath (1/3)

• Datapath is the hardware that 
performs operations necessary to 
execute programs.

• Control instructs datapath on what to 
do next.

• Datapath needs:
• access to storage (general purpose 
registers and memory)

• computational ability (ALU)
• helper hardware (local registers and PC)
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Review Datapath (2/3)

• Five stages of datapath (executing an 
instruction):

1. Instruction Fetch (Increment PC)
2. Instruction Decode (Read Registers)
3. ALU (Computation)
4. Memory Access
5. Write to Registers

• ALL instructions must go through ALL 
five stages.
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Review Datapath (3/3)
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Gotta Do Laundry
° Ann, Brian, Cathy, Dave 

each have one load of 
clothes to wash, dry, 
fold, and put away

A B C D

° Dryer takes 30 minutes

° “Folder” takes 30 minutes

° “Stasher” takes 30 minutes 
to put clothes into drawers

° Washer takes 30 minutes
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Sequential Laundry

• Sequential laundry takes 
8 hours for 4 loads
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Pipelined Laundry

• Pipelined laundry takes 
3.5 hours for 4 loads!
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General Definitions

• Latency: time to completely execute a 
certain task

• for example, time to read a sector from 
disk is disk access time or disk latency

• Instruction latency is time from when 
instruction starts to time when it 
finishes.

• Throughput: amount of work that can 
be done over a period of time
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Pipelining Lessons (0/2)
• Terminology:

• Issue: When 
instruction goes 
into first stage of 
pipe.

• Commit: when 
instruction 
finishes last stage
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Pipelining Lessons (1/2)
• Pipelining doesn’t help 

latency of single task, it 
helps throughput of 
entire workload

• Multiple tasks 
operating 
simultaneously using 
different resources

• Potential speedup = 
Number pipe stages

• Time to “fill” pipeline 
and time to “drain” it 
reduces speedup:
2.3X v. 4X in this 
example
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Pipelining Lessons (2/2)
• Suppose new 
Washer takes 20 
minutes, new 
Stasher takes 20 
minutes. How 
much faster is 
pipeline?

• Pipeline rate 
limited by slowest
pipeline stage

• Unbalanced 
lengths of pipe 
stages also 
reduces speedup
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Steps in Executing MIPS

1) IFetch: Fetch Instruction, Increment PC
2) Decode Instruction, Read Registers
3) Execute:

Mem-ref: Calculate Address
Arith-log: Perform Operation

4) Memory: 
Load: Read Data from Memory
Store: Write Data to Memory

5) Write Back: Write Data to Register
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Pipelined Execution Representation

• Every instruction must take same number 
of steps, also called pipeline “stages”, so 
some will go idle sometimes

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

Time
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Review: Datapath for MIPS

• Use datapath figure to represent pipeline
IFtch Dcd Exec Mem WB
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Graphical Pipeline Representation
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Example

• Suppose 2 ns for memory access, 2 ns 
for ALU operation, and 1 ns for register 
file read or write; compute instruction 
throughput

• Nonpipelined Execution:
• lw : IF + Read Reg + ALU + Memory + Write 
Reg = 2 + 1 + 2 + 2 + 1 = 8 ns

• add: IF + Read Reg + ALU + Write Reg
= 2 + 1 + 2 + 1 = 6 ns

• Pipelined Execution:
• Max(IF,Read Reg,ALU,Memory,Write Reg)   
= 2 ns  
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Example

• Suppose 2 ns for memory access, 2 ns 
for ALU operation, and 1 ns for register 
file read or write; compute instruction 
latency

• Nonpipelined Execution:
• lw : IF + Read Reg + ALU + Memory + Write 
Reg = 2 + 1 + 2 + 2 + 1 = 8 ns

• add: IF + Read Reg + ALU + Write Reg
= 2 + 1 + 2 + 1 = 6 ns

• Pipelined Execution:
• SUM(IF,Read Reg,ALU,Memory,Write Reg)   
= 10 ns  
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Things to Remember
• Optimal Pipeline

• Each stage is executing part of an 
instruction each clock cycle.

• One instruction finishes during each 
clock cycle.

• On average, executes far more quickly.

• What makes this work?
• Similarities between instructions allow 
us to use same stages for all instructions 
(generally).

• Each stage takes about the same amount 
of time as all others: little wasted time.
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Pipeline Summary

• Pipelining is a BIG IDEA
• widely used concept

• What makes it less than perfect? …

CS 61C L18 Pipelining I (23) A Carle, Summer 2005 © UCB

Administrivia

• Project 2 – Sunday
• HW6 out now

• Due next Tuesday
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Pipeline Hazard: Matching socks in later load

A depends on D; stall since folder tied up
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Problems for Computers

• Limits to pipelining: Hazards prevent 
next instruction from executing during 
its designated clock cycle

• Structural hazards: HW cannot support 
this combination of instructions (single 
person to fold and put clothes away)

• Control hazards: Pipelining of branches & 
other instructions stall the pipeline until 
the hazard; “bubbles” in the pipeline

• Data hazards: Instruction depends on 
result of prior instruction still in the 
pipeline (missing sock)
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Structural Hazard #1: Single Memory (1/2)

Read same memory twice in same clock cycle
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Structural Hazard #1: Single Memory (2/2)

• Solution:
• infeasible and inefficient to create 
second memory

• (We’ll learn about this more next week)
• so simulate this by having two Level 1 
Caches (a temporary smaller [of usually 
most recently used] copy of memory)

• have both an L1 Instruction Cache and 
an L1 Data Cache

• requires complex hardware to control 
when both caches miss!
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Structural Hazard #2: Registers (1/2)

Can’t read and write to registers simultaneously
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Structural Hazard #2: Registers (2/2)

• Fact: Register access is VERY fast: 
takes less than half the time of ALU 
stage

• Solution: introduce convention
• always Write to Registers during first half 
of each clock cycle

• always Read from Registers during 
second half of each clock cycle (easy 
when async)

• Result: can perform Read and Write 
during same clock cycle
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Control Hazard: Branching (1/7)

Where do we do the compare for the branch?
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Control Hazard: Branching (2/7)

• We put branch decision-making 
hardware in ALU stage

• therefore two more instructions after the 
branch will always be fetched, whether or 
not the branch is taken

• Desired functionality of a branch
• if we do not take the branch, don’t waste 
any time and continue executing 
normally

• if we take the branch, don’t execute any 
instructions after the branch, just go to 
the desired label
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Control Hazard: Branching (3/7)

• Initial Solution: Stall until decision is 
made

• insert “no-op” instructions: those that 
accomplish nothing, just take time

• Drawback: branches take 3 clock cycles 
each (assuming comparator is put in 
ALU stage)

• Drawback: Will still fetch inst at 
branch+4. Must either decode branch in 
IF or squash fetched branch+4.
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Control Hazard: Branching (4/7)

• Optimization #1:
• move asynchronous comparator up to 
Stage 2

• as soon as instruction is decoded 
(Opcode identifies is as a branch), 
immediately make a decision and set the 
value of the PC (if necessary)

• Benefit: since branch is complete in 
Stage 2, only one unnecessary 
instruction is fetched, so only one no-op 
is needed

• Side Note: This means that branches are 
idle in Stages 3, 4 and 5.
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• Insert a single no-op (bubble)

Control Hazard: Branching (5/7)
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• Impact: 2 clock cycles per branch 
instruction ⇒ slow
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Control Hazard: Branching (6/7)

• Optimization #2: Redefine branches
• Old definition: if we take the branch, 
none of the instructions after the branch 
get executed by accident

• New definition: whether or not we take 
the branch, the single instruction 
immediately following the branch gets 
executed (called the branch-delay slot)
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Control Hazard: Branching (7/7)

• Notes on Branch-Delay Slot
• Worst-Case Scenario: can always put a 
no-op in the branch-delay slot

• Better Case: can find an instruction 
preceding the branch which can be 
placed in the branch-delay slot without 
affecting flow of the program

- re-ordering instructions is a common 
method of speeding up programs

- compiler must be very smart in order to find 
instructions to do this

- usually can find such an instruction at least 
50% of the time

- Jumps also have a delay slot…
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Example: Nondelayed vs. Delayed Branch

add $1 ,$2,$3

sub $4, $5,$6

beq $1, $4, Exit

or   $8, $9 ,$10

xor $10, $1,$11

Nondelayed Branch
add $1 ,$2,$3

sub $4, $5,$6

beq $1, $4, Exit

or   $8, $9 ,$10

xor $10, $1,$11

Delayed Branch

Exit: Exit:
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Data Hazards (1/2)

add $t0, $t1, $t2

sub $t4, $t0 ,$t3

and $t5, $t0 ,$t6

or  $t7, $t0 ,$t8

xor $t9, $t0 ,$t10

• Consider the following sequence of 
instructions
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$t0 not written back in time!

Data Hazards (2/2)

sub $t4,$t0,$t3
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Fix by Forwarding result as soon as we have it 
to where we need it:

Data Hazard Solution: Forwarding

sub $t4,$t0,$t3

A
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UI$ Reg D$ Reg

and $t5,$t0,$t6

A
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UI$ Reg D$ Reg

or   $t7,$t0,$t8 * I$

A
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xor $t9,$t0,$t10

A
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UI$ Reg D$ Reg

add $t0,$t1,$t2
IF ID/RF EX MEM WBA

L
UI$ Reg D$ Reg

* “or” hazard solved by register hardware
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• Forwarding works if value is available (but not 
written back) before it is needed. But consider …

Data Hazard: Loads (1/4)

sub $t3,$t0,$t2

A
L

UI$ Reg D$ Reg

lw $t0,0($t1)
IF ID/RF EX MEM WBA

L
UI$ Reg D$ Reg

•Need result before it is calculated! 
•Must stall use (sub) 1 cycle and then
forward. …
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• Hardware must stall pipeline
• Called “interlock”

Data Hazard: Loads (2/4)

sub $t3,$t0,$t2
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lw $t0, 0($t1)
IF ID/RF EX MEM WBA
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Data Hazard: Loads (3/4)

• Instruction slot after a load is called 
“load delay slot”

• If that instruction uses the result of the 
load, then the hardware interlock will 
stall it for one cycle.

• If the compiler puts an unrelated 
instruction in that slot, then no stall

• Letting the hardware stall the instruction 
in the delay slot is equivalent to putting 
a nop in the slot  (except the latter uses 
more code space)
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Data Hazard: Loads (4/4)
• Stall is equivalent to nop

sub $t3,$t0,$t2

and $t5,$t0,$t4
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C.f. Branch Delay vs. Load Delay

• Load Delay occurs only if necessary 
(dependent instructions).

• Branch Delay always happens (part of 
the ISA).

• Why not have Branch Delay 
interlocked?

• Answer: Interlocks only work if you can 
detect hazard ahead of time. By the time 
we detect a branch, we already need its 
value … hence no interlock is possible!
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Historical Trivia

• First MIPS design did not interlock and 
stall on load-use data hazard

• Real reason for name behind MIPS: 
Microprocessor without 
Interlocked 
Pipeline 
Stages

• Word Play on acronym for 
Millions of Instructions Per Second, 
also called MIPS

• Load/Use Wrong Answer!
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“And in Conclusion..”

• Pipeline challenge is hazards
• Forwarding helps w/many data hazards
• Delayed branch helps with control 
hazard in 5 stage pipeline


