
CS 61C L18 Pipelining I (1) A Carle, Summer 2005 © UCB

inst.eecs.berkeley.edu/~cs61c/su05
CS61C : Machine Structures

Lecture #18: Pipelining 1

2005-07-20

Andy Carle
CS 61C L18 Pipelining I (2) A Carle, Summer 2005 © UCB

An Abstract View of the Critical Path
Critical Path (Load Operation) =

Delay clock through PC (FFs) +
Instruction Memory’s Access Time +
Register File’s Access Time +
ALU to Perform a 32-bit Add +
Data Memory Access Time +
Stable Time for Register File Write

Clk

5

Rw Ra Rb
32 32-bit
Registers

Rd

A
L

U

Clk

Data
In

Data
Address Ideal

Data
Memory

Instruction

Instruction
Address

Ideal
Instruction

Memory

C
lk

PC

5
Rs

5
Rt

16
Imm

32

32
3232
A

B

N
ex

t A
dd

re
ss

• This affects
how much you
can overclock
your PC!

CS 61C L18 Pipelining I (3) A Carle, Summer 2005 © UCB

Improve Critical Path Improve Clock

• “Critical path” (longest path through logic)
determines length of clock period

• To reduce clock period decrease path
through CL by inserting State

Clk

.

.

.

.

.

.

.

.

.

.

.

.

CS 61C L18 Pipelining I (4) A Carle, Summer 2005 © UCB

°5 steps to design a processor
• 1. Analyze instruction set => datapath requirements
• 2. Select set of datapath components & establish clock

methodology
• 3. Assemble datapath meeting the requirements
• 4. Analyze implementation of each instruction to

determine setting of control points that effects the
register transfer.

• 5. Assemble the control logic
°Control is the hard part
°MIPS makes that easier

• Instructions same size
• Source registers always in same place
• Immediates same size, location
• Operations always on registers/immediates

Review: Single cycle datapath

Control

Datapath

Memory

Processor
Input

Output

CS 61C L18 Pipelining I (5) A Carle, Summer 2005 © UCB

Review Datapath (1/3)

• Datapath is the hardware that
performs operations necessary to
execute programs.

• Control instructs datapath on what to
do next.

• Datapath needs:
• access to storage (general purpose
registers and memory)

• computational ability (ALU)
• helper hardware (local registers and PC)

CS 61C L18 Pipelining I (6) A Carle, Summer 2005 © UCB

Review Datapath (2/3)

• Five stages of datapath (executing an
instruction):

1. Instruction Fetch (Increment PC)
2. Instruction Decode (Read Registers)
3. ALU (Computation)
4. Memory Access
5. Write to Registers

• ALL instructions must go through ALL
five stages.

CS 61C L18 Pipelining I (7) A Carle, Summer 2005 © UCB

Review Datapath (3/3)
PC

in
st

ru
ct

io
n

m
em

or
y

+4

rt
rs
rd

re
gi

st
er

s
ALU

D
at

a
m

em
or

y

imm

1. Instruction
Fetch

2. Decode/
Register
Read

3. Execute 4. Memory5. Write
Back

CS 61C L18 Pipelining I (8) A Carle, Summer 2005 © UCB

Gotta Do Laundry
° Ann, Brian, Cathy, Dave

each have one load of
clothes to wash, dry,
fold, and put away

A B C D

° Dryer takes 30 minutes

° “Folder” takes 30 minutes

° “Stasher” takes 30 minutes
to put clothes into drawers

° Washer takes 30 minutes

CS 61C L18 Pipelining I (9) A Carle, Summer 2005 © UCB

Sequential Laundry

• Sequential laundry takes
8 hours for 4 loads

T
a
s
k

O
r
d
e
r

B

C
D

A
30

Time
3030 3030 30 3030 30 30 3030 3030 3030

6 PM 7 8 9 10 11 12 1 2 AM

CS 61C L18 Pipelining I (10) A Carle, Summer 2005 © UCB

Pipelined Laundry

• Pipelined laundry takes
3.5 hours for 4 loads!

T
a
s
k

O
r
d
e
r

B
C
D

A

12 2 AM6 PM 7 8 9 10 11 1

Time303030 3030 30 30

CS 61C L18 Pipelining I (11) A Carle, Summer 2005 © UCB

General Definitions

• Latency: time to completely execute a
certain task

• for example, time to read a sector from
disk is disk access time or disk latency

• Instruction latency is time from when
instruction starts to time when it
finishes.

• Throughput: amount of work that can
be done over a period of time

CS 61C L18 Pipelining I (12) A Carle, Summer 2005 © UCB

Pipelining Lessons (0/2)
• Terminology:

• Issue: When
instruction goes
into first stage of
pipe.

• Commit: when
instruction
finishes last stage

6 PM 7 8 9
Time

B
C
D

A
3030 30 3030 30 30

T
a
s
k

O
r
d
e
r

CS 61C L18 Pipelining I (13) A Carle, Summer 2005 © UCB

Pipelining Lessons (1/2)
• Pipelining doesn’t help

latency of single task, it
helps throughput of
entire workload

• Multiple tasks
operating
simultaneously using
different resources

• Potential speedup =
Number pipe stages

• Time to “fill” pipeline
and time to “drain” it
reduces speedup:
2.3X v. 4X in this
example

6 PM 7 8 9
Time

B
C
D

A
3030 30 3030 30 30

T
a
s
k

O
r
d
e
r

CS 61C L18 Pipelining I (14) A Carle, Summer 2005 © UCB

Pipelining Lessons (2/2)
• Suppose new
Washer takes 20
minutes, new
Stasher takes 20
minutes. How
much faster is
pipeline?

• Pipeline rate
limited by slowest
pipeline stage

• Unbalanced
lengths of pipe
stages also
reduces speedup

6 PM 7 8 9
Time

B
C
D

A
3030 30 3030 30 30

T
a
s
k

O
r
d
e
r

CS 61C L18 Pipelining I (15) A Carle, Summer 2005 © UCB

Steps in Executing MIPS

1) IFetch: Fetch Instruction, Increment PC
2) Decode Instruction, Read Registers
3) Execute:

Mem-ref: Calculate Address
Arith-log: Perform Operation

4) Memory:
Load: Read Data from Memory
Store: Write Data to Memory

5) Write Back: Write Data to Register

CS 61C L18 Pipelining I (16) A Carle, Summer 2005 © UCB

Pipelined Execution Representation

• Every instruction must take same number
of steps, also called pipeline “stages”, so
some will go idle sometimes

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

Time

CS 61C L18 Pipelining I (17) A Carle, Summer 2005 © UCB

Review: Datapath for MIPS

• Use datapath figure to represent pipeline
IFtch Dcd Exec Mem WB

A
L

UI$ Reg D$ Reg

PC

in
st

ru
ct

io
n

m
em

or
y

+4

rt
rs
rd

re
gi

st
er

s

ALU

D
at

a
m

em
or

y

imm

1. Instruction
Fetch

2. Decode/
Register Read

3. Execute 4. Memory5. Write
Back

CS 61C L18 Pipelining I (18) A Carle, Summer 2005 © UCB

Graphical Pipeline Representation

I
n
s
t
r.

O
r
d
e
r

Load

Add

Store

Sub

Or

I$

Time (clock cycles)

I$

A
L

U

Reg

Reg

I$

D$

A
L

U

A
L

U

Reg

D$

Reg

I$

D$

Reg

A
L

U

Reg Reg

Reg

D$

Reg

D$

A
L

U

(In Reg, right half highlight read, left half write)

Reg

I$

CS 61C L18 Pipelining I (19) A Carle, Summer 2005 © UCB

Example

• Suppose 2 ns for memory access, 2 ns
for ALU operation, and 1 ns for register
file read or write; compute instruction
throughput

• Nonpipelined Execution:
• lw : IF + Read Reg + ALU + Memory + Write
Reg = 2 + 1 + 2 + 2 + 1 = 8 ns

• add: IF + Read Reg + ALU + Write Reg
= 2 + 1 + 2 + 1 = 6 ns

• Pipelined Execution:
• Max(IF,Read Reg,ALU,Memory,Write Reg)
= 2 ns

CS 61C L18 Pipelining I (20) A Carle, Summer 2005 © UCB

Example

• Suppose 2 ns for memory access, 2 ns
for ALU operation, and 1 ns for register
file read or write; compute instruction
latency

• Nonpipelined Execution:
• lw : IF + Read Reg + ALU + Memory + Write
Reg = 2 + 1 + 2 + 2 + 1 = 8 ns

• add: IF + Read Reg + ALU + Write Reg
= 2 + 1 + 2 + 1 = 6 ns

• Pipelined Execution:
• SUM(IF,Read Reg,ALU,Memory,Write Reg)
= 10 ns

CS 61C L18 Pipelining I (21) A Carle, Summer 2005 © UCB

Things to Remember
• Optimal Pipeline

• Each stage is executing part of an
instruction each clock cycle.

• One instruction finishes during each
clock cycle.

• On average, executes far more quickly.

• What makes this work?
• Similarities between instructions allow
us to use same stages for all instructions
(generally).

• Each stage takes about the same amount
of time as all others: little wasted time.

CS 61C L18 Pipelining I (22) A Carle, Summer 2005 © UCB

Pipeline Summary

• Pipelining is a BIG IDEA
• widely used concept

• What makes it less than perfect? …

CS 61C L18 Pipelining I (23) A Carle, Summer 2005 © UCB

Administrivia

• Project 2 – Sunday
• HW6 out now

• Due next Tuesday

CS 61C L18 Pipelining I (24) A Carle, Summer 2005 © UCB

Pipeline Hazard: Matching socks in later load

A depends on D; stall since folder tied up

T
a
s
k

O
r
d
e
r

B
C
D

A

E

F

bubble

12 2 AM6 PM 7 8 9 10 11 1

Time303030 3030 30 30

CS 61C L18 Pipelining I (25) A Carle, Summer 2005 © UCB

Problems for Computers

• Limits to pipelining: Hazards prevent
next instruction from executing during
its designated clock cycle

• Structural hazards: HW cannot support
this combination of instructions (single
person to fold and put clothes away)

• Control hazards: Pipelining of branches &
other instructions stall the pipeline until
the hazard; “bubbles” in the pipeline

• Data hazards: Instruction depends on
result of prior instruction still in the
pipeline (missing sock)

CS 61C L18 Pipelining I (26) A Carle, Summer 2005 © UCB

Structural Hazard #1: Single Memory (1/2)

Read same memory twice in same clock cycle

I$

Load

Instr 1

Instr 2

Instr 3

Instr 4

A
L

UI$ Reg D$ Reg

A
L

UI$ Reg D$ Reg
A

L
UI$ Reg D$ Reg

A
L

UReg D$ Reg

A
L

UI$ Reg D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

CS 61C L18 Pipelining I (27) A Carle, Summer 2005 © UCB

Structural Hazard #1: Single Memory (2/2)

• Solution:
• infeasible and inefficient to create
second memory

• (We’ll learn about this more next week)
• so simulate this by having two Level 1
Caches (a temporary smaller [of usually
most recently used] copy of memory)

• have both an L1 Instruction Cache and
an L1 Data Cache

• requires complex hardware to control
when both caches miss!

CS 61C L18 Pipelining I (28) A Carle, Summer 2005 © UCB

Structural Hazard #2: Registers (1/2)

Can’t read and write to registers simultaneously

I$

sw

Instr 1

Instr 2

Instr 3

Instr 4

A
L

UI$ Reg D$ Reg

A
L

UI$ Reg D$ Reg

A
L

UI$ Reg D$ Reg

A
L

UReg D$ Reg

A
L

UI$ Reg D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

CS 61C L18 Pipelining I (29) A Carle, Summer 2005 © UCB

Structural Hazard #2: Registers (2/2)

• Fact: Register access is VERY fast:
takes less than half the time of ALU
stage

• Solution: introduce convention
• always Write to Registers during first half
of each clock cycle

• always Read from Registers during
second half of each clock cycle (easy
when async)

• Result: can perform Read and Write
during same clock cycle

CS 61C L18 Pipelining I (30) A Carle, Summer 2005 © UCB

Control Hazard: Branching (1/7)

Where do we do the compare for the branch?

I$

beq

Instr 1

Instr 2

Instr 3

Instr 4

A
L

UI$ Reg D$ Reg

A
L

UI$ Reg D$ Reg

A
L

UI$ Reg D$ Reg

A
L

UReg D$ Reg

A
L

UI$ Reg D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

CS 61C L18 Pipelining I (31) A Carle, Summer 2005 © UCB

Control Hazard: Branching (2/7)

• We put branch decision-making
hardware in ALU stage

• therefore two more instructions after the
branch will always be fetched, whether or
not the branch is taken

• Desired functionality of a branch
• if we do not take the branch, don’t waste
any time and continue executing
normally

• if we take the branch, don’t execute any
instructions after the branch, just go to
the desired label

CS 61C L18 Pipelining I (32) A Carle, Summer 2005 © UCB

Control Hazard: Branching (3/7)

• Initial Solution: Stall until decision is
made

• insert “no-op” instructions: those that
accomplish nothing, just take time

• Drawback: branches take 3 clock cycles
each (assuming comparator is put in
ALU stage)

• Drawback: Will still fetch inst at
branch+4. Must either decode branch in
IF or squash fetched branch+4.

CS 61C L18 Pipelining I (33) A Carle, Summer 2005 © UCB

Control Hazard: Branching (4/7)

• Optimization #1:
• move asynchronous comparator up to
Stage 2

• as soon as instruction is decoded
(Opcode identifies is as a branch),
immediately make a decision and set the
value of the PC (if necessary)

• Benefit: since branch is complete in
Stage 2, only one unnecessary
instruction is fetched, so only one no-op
is needed

• Side Note: This means that branches are
idle in Stages 3, 4 and 5.

CS 61C L18 Pipelining I (34) A Carle, Summer 2005 © UCB

• Insert a single no-op (bubble)

Control Hazard: Branching (5/7)

add

beq

lw

A
L

UI$ Reg D$ Reg

A
L

UI$ Reg D$ Reg

A
L

UReg D$ RegI$

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

bub
ble

• Impact: 2 clock cycles per branch
instruction ⇒ slow

CS 61C L18 Pipelining I (35) A Carle, Summer 2005 © UCB

Control Hazard: Branching (6/7)

• Optimization #2: Redefine branches
• Old definition: if we take the branch,
none of the instructions after the branch
get executed by accident

• New definition: whether or not we take
the branch, the single instruction
immediately following the branch gets
executed (called the branch-delay slot)

CS 61C L18 Pipelining I (36) A Carle, Summer 2005 © UCB

Control Hazard: Branching (7/7)

• Notes on Branch-Delay Slot
• Worst-Case Scenario: can always put a
no-op in the branch-delay slot

• Better Case: can find an instruction
preceding the branch which can be
placed in the branch-delay slot without
affecting flow of the program

- re-ordering instructions is a common
method of speeding up programs

- compiler must be very smart in order to find
instructions to do this

- usually can find such an instruction at least
50% of the time

- Jumps also have a delay slot…

CS 61C L18 Pipelining I (37) A Carle, Summer 2005 © UCB

Example: Nondelayed vs. Delayed Branch

add $1 ,$2,$3

sub $4, $5,$6

beq $1, $4, Exit

or $8, $9 ,$10

xor $10, $1,$11

Nondelayed Branch
add $1 ,$2,$3

sub $4, $5,$6

beq $1, $4, Exit

or $8, $9 ,$10

xor $10, $1,$11

Delayed Branch

Exit: Exit:

CS 61C L18 Pipelining I (38) A Carle, Summer 2005 © UCB

Data Hazards (1/2)

add $t0, $t1, $t2

sub $t4, $t0 ,$t3

and $t5, $t0 ,$t6

or $t7, $t0 ,$t8

xor $t9, $t0 ,$t10

• Consider the following sequence of
instructions

CS 61C L18 Pipelining I (39) A Carle, Summer 2005 © UCB

$t0 not written back in time!

Data Hazards (2/2)

sub $t4,$t0,$t3

A
L

UI$ Reg D$ Reg

and $t5,$t0,$t6

A
L

UI$ Reg D$ Reg

or $t7,$t0,$t8 I$

A
L

UReg D$ Reg

xor $t9,$t0,$t10

A
L

UI$ Reg D$ Reg

add $t0,$t1,$t2
IF ID/RF EX MEM WBA

L
UI$ Reg D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

CS 61C L18 Pipelining I (40) A Carle, Summer 2005 © UCB

Fix by Forwarding result as soon as we have it
to where we need it:

Data Hazard Solution: Forwarding

sub $t4,$t0,$t3

A
L

UI$ Reg D$ Reg

and $t5,$t0,$t6

A
L

UI$ Reg D$ Reg

or $t7,$t0,$t8 * I$

A
L

UReg D$ Reg

xor $t9,$t0,$t10

A
L

UI$ Reg D$ Reg

add $t0,$t1,$t2
IF ID/RF EX MEM WBA

L
UI$ Reg D$ Reg

* “or” hazard solved by register hardware

CS 61C L18 Pipelining I (41) A Carle, Summer 2005 © UCB

• Forwarding works if value is available (but not
written back) before it is needed. But consider …

Data Hazard: Loads (1/4)

sub $t3,$t0,$t2

A
L

UI$ Reg D$ Reg

lw $t0,0($t1)
IF ID/RF EX MEM WBA

L
UI$ Reg D$ Reg

•Need result before it is calculated!
•Must stall use (sub) 1 cycle and then
forward. …

CS 61C L18 Pipelining I (42) A Carle, Summer 2005 © UCB

• Hardware must stall pipeline
• Called “interlock”

Data Hazard: Loads (2/4)

sub $t3,$t0,$t2

A
L

UI$ Reg D$ Regbub
ble

and $t5,$t0,$t4

A
L

UI$ Reg D$ Regbub
ble

or $t7,$t0,$t6 I$

A
L

UReg D$bub
ble

lw $t0, 0($t1)
IF ID/RF EX MEM WBA

L
UI$ Reg D$ Reg

CS 61C L18 Pipelining I (43) A Carle, Summer 2005 © UCB

Data Hazard: Loads (3/4)

• Instruction slot after a load is called
“load delay slot”

• If that instruction uses the result of the
load, then the hardware interlock will
stall it for one cycle.

• If the compiler puts an unrelated
instruction in that slot, then no stall

• Letting the hardware stall the instruction
in the delay slot is equivalent to putting
a nop in the slot (except the latter uses
more code space)

CS 61C L18 Pipelining I (44) A Carle, Summer 2005 © UCB

Data Hazard: Loads (4/4)
• Stall is equivalent to nop

sub $t3,$t0,$t2

and $t5,$t0,$t4

or $t7,$t0,$t6 I$

A
L

UReg D$

lw $t0, 0($t1) A
L

UI$ Reg D$ Reg

bub
ble

bub
ble

bub
ble

bub
ble

bub
ble

A
L

UI$ Reg D$ Reg

A
L

UI$ Reg D$ Reg

nop

CS 61C L18 Pipelining I (45) A Carle, Summer 2005 © UCB

C.f. Branch Delay vs. Load Delay

• Load Delay occurs only if necessary
(dependent instructions).

• Branch Delay always happens (part of
the ISA).

• Why not have Branch Delay
interlocked?

• Answer: Interlocks only work if you can
detect hazard ahead of time. By the time
we detect a branch, we already need its
value … hence no interlock is possible!

CS 61C L18 Pipelining I (46) A Carle, Summer 2005 © UCB

Historical Trivia

• First MIPS design did not interlock and
stall on load-use data hazard

• Real reason for name behind MIPS:
Microprocessor without
Interlocked
Pipeline
Stages

• Word Play on acronym for
Millions of Instructions Per Second,
also called MIPS

• Load/Use Wrong Answer!

CS 61C L18 Pipelining I (49) A Carle, Summer 2005 © UCB

“And in Conclusion..”

• Pipeline challenge is hazards
• Forwarding helps w/many data hazards
• Delayed branch helps with control
hazard in 5 stage pipeline

