inst.eecs.berkeley.edu/~cs61lc/su05

CS61C : Machine Structures

Lecture #19: Pipelining Il

2005-07-21

@ Andy Carle

Review: Problems for Computers

*Limits to pipelining: Hazards prevent
next instruction from executing during
its designated clock cycle

e Structural hazards: HW cannot support
this combination of instructions (single
person to fold and put clothes away)

e Control hazards: Pipelining of branches &
other instructions stall the pipeline until
the hazard; “bubbles” in the pipeline

»Data hazards: Instruction depends on
result of prior instruction still in the
pipeline (missing sock)

*Use datapath figure to represent pipeline

EREN |
@&t J_H’

Review: Datapath for MIPS

l

rd [N
(6] 5 > %
a 35S |rs 5 © g
2 E I o T E
2E -
1. Instruction 2. Decode/ 3. Execute 4 Memorys' Write
’ : Back

Fetch Register Read

[IFtch]Ded [Exec]Mem[wB |

I@ i

Review: C.f. Branch Delay vs. Load Delay

*Load Delay occurs only if necessary
(dependent instructions).

*Branch Delay always happens (part of
the ISA). Y Y PP (p

*Why not have Branch Delay
interlocked?

*Answer: Interlocks only work if you can
detect hazard ahead of time. By the time
we detect a branch, we already need its
value ... hence no interlock is possible!

I@ S

FYI: Historical Trivia

*First MIPS design did not interlock and
stall on load-use data hazard

*Real reason for name behind MIPS:
Microprocessor without
Interlocked
Pipeline
Stages

*Word Play on acronym for
Millions of Instructions Per Second,
also called MIPS

*Load/Use = Wrong Answer!

CS61C 110 PiDelnng I (5)

QOutline

*Pipeline Control

@ CS61C 110 Ploclining 11 (6) Salle, SUmmer 20050 U

Piped Proc So Far ...

@ CS61CLI0Pineinng () ACarle, Sunmer 2005 o ucel

New Representation: Regs more explicit

IFIDE DE/EX _EX/ME ME/WB

Reg
File

Next PC
P
Inst. Mem

® What's Missing???

ACarle, Summer 2005 © uce|

New Representation: Regs more explicit

IF/DE DE/EX _EX/ME ME/WB

Next PC
L pC
Inst. Mem
Reg.
File

IF/DE.Ir = Instruction

DE/EX.A = BusA out of Reg

EX/ME.S = AluOut

EX/ME.D = Bus B pass-through for sw
ME/WB.S = ALuOut pass-through
ME/WB.M = Mem Result from lw

Pipelined Control

A<-RIrs]; B<—R[rt]

i3
|] |]
ks

]
kS 3
L2 i1 o
12

¥ ks
S<-A+B; S<-Aorzx; S<A+SX

mares | [mo<s | [reew

:

Next PC

@ CSGI1C 110 Ploclining Il (6)

Cale SUNMe 20050 UCE

Pipelined Processor (almost) for slides

Idea: Parallel Piped Control ...

Inst. Mem

Equal

Mem Ctrl

Data Stationary Control

« The Main Control generates the control signals during Reg/Dec
« Control signals for Exec (ExtOp, ALUSrc, ...) are used 1 cycle later
« Control signals for Mem (MemWr Branch) are used 2 cycles later
« Control signals for Wr (MemtoReg MemWr) are used 3 cycles later

Reg/Dec 1 Exec : B Mem : Wr
1 [1
ExtOp O
ALUSrc
m
- ALUOD |- g B
T i 9 <
H Main | pegpst | & 3
| RegDst | <
g_ Control x 3 2
MemwW F|_ Memw D Memw o
=3 Branch @'| Branch S| rBranch S
g g g g
MemtoReg MemtoReg = | MemtoReg
RegWr RegWr RegWr

@ CS61C 110 Ploelining 11 (12) Cale, SUmme 20050.UCE

Let’s Try it Out

10 lw rl, 36(r2)
14 addl r2,r2,3
20 sub r3,r4,r5
24 beq r6,r7, 100

28 ori 8,19, 17
32 add r10,r11,r12
100 and ri13,ri14, 15

@ CS61CLI0PIDSinng 1103

ACarle Sunmer

Fetch 14, Decode 10

Inst. Mem
w r1, 36(2)] |

r1, 36(r2)

r2,r2,3

13, 14,15
6, r7,100
18,19, 17
r1o,r11, ri2

100 and ri3,rl4, 15

Fetch 24, Decode 20, Exec 14, Mem 10

wB
Ctrl

|

=)
D -
o

Inst. Mem

Mem
Cirl

—

File

10w rl, 36(r2)

14 addl r2,r2,3

20 sub r3,r4,15

{724 Beq T8I YT, 100

30 ori 8,19, 17
[3) 34 add ri0,rll1,ri2
o

100 and r13,r14,15

Start: Fetch 10

Inst. Mem

rl, 36(r2)
r2,12,3
3, 14,15
r6, 17, 100
8,19, 17
r10,r11, r12
@ 100 and r13,r14,15
CSG1C 110 PiRelning 118
Fetch 20, Decode 14, Exec 10
-
E|o
=
£)3
R
r1, 36(r2)
r2,12,3
r3, 14,15
6, r7, 100
18,19, 17
r1o, r11, r12
@ 100 and ri3,rl4, 15
CS61CL1o Pipelining Il (16)

[q
N

Inst. Mem
beq r6, r7 14

Pyl

Fetch 30, Dcd 24, Ex 20, Mem 14, WB 10

rl, 36(r2)

12,12, 3 |

r3,14,15

16, r7, 100

8,19, 17

e Delayed Branch: always execute ori after beq
CS.61C L9 Pioelining I G48)

100 and

r10,ri1, r12

r13,rl4, 15

Fetch 100, Dcd 30, Ex 24, Mem 20, WB 14

Mem
Cirl

2 |orir8,r9 17|
addl r2

MIr2+35]

rl:

r1, 36(r2)

12,r2,3

13,1415

rf,.r7,.100,

18,.19,17

I3} 34 add r10,r11,r12

IFi{ 100 an4....013, 114.15
CSEICLI9 PN (0)

Double-Clocked Signals

Valid

Mem Ctrl

Next PC

* In general: Inputs to edge components are their
own pipeline regs
Watch out for stalls and such!

CS61C 19 Pipelining 11 21)

ACarle, Summer 2005 © uce|

Outline

*Pipeline Control

eForwarding Control

Carle, Summer 2005 0 UCh|

* Remember: ~ means triggered on edg.
* What is wrong here?

@ CSG1C 110 Ploclining 1l 20)

Cale, Summer 200

ycs!

Administrivia

*Proj 2 — Due Sunday
*HW®6 — Due Tuesday

*Midterm 2:
e Friday, July 29: 11:00 - 2:00
eLocation TBD

«If you are really so concerned about the
drop deadline that this is a problem for
you, talk to me about the possibility of
taking the exam on Thursday

ACarle Summer

Review: Forwarding

Fix by Forwarding result as soon as we have it
to where we need it:

ID/RF

IF
add $t0,8t1,$t2[15 J[Rs]
sub $t4,5t0,$t3

and $t5,$10,$t6
or $t7,5t0,$t8 *

xor $t9,5:0,$t10

@ *“or” hazard solved by register hardware

CS61C 110 Ploelining 1| 25)

Cale, SUmme 20050.UCE

Forwarding

In general:

«For each stage i that has reg inputs

*For each stage j after | that has reg output
- Ifi.reg ==j.reg = forward j value back to i.
- Some exceptions ($0, invalid)

In particular:

*ALUinput < (ALUResult, MemResult)
*Meminput € (MemResult)

ACarle Sunmer

Pending Writes In Pipeline Registers

» Current operand
registers

« Pending writes

« hazard <=
((rs == g,y ®W,,) OR
((rs == Wy & regW,,) OR
((rs == rw,, ®W,,) OR
((rt==rw,,, ®W,) OR
(1t == Wy & regW,,.) OR
((t==w,) ®W,,)

CS61C 19 Pipelining 11 28)

ACarle, Summer 2005 © uce|

What about memory operations?

op Rd Ra Rb

op Rd Ra Rb
RTL: l!

R1<-Mem[R2 +1]; e

Mem[R3+34] <- R1 . m

to reg
file

Tricky situation:
MIPS:

Iw 0($t0)

sw O($t1)

Carle, Summer 2005 0 UCh|

Pending Writes In Pipeline Registers

Cale, Summer 200

ycs!

Forwarding Muxes

* Detect nearest
valid write op
operand
register and
forward into op
latches,
bypassing
remainder of
the pipe

* Increase muxes
to add paths
from pipeline
registers

« Data Forwarding
= Data Bypassing

=+ _CS61C 10 Pipeining 129

ACarle Summer

What about memory operations?

. . . Rd Ra Rb
Tricky situation: o e

MIPS:
lw 0($t0)
sw O($t1)

op Rd RaRb
RTL:
R1<-Mem[R2 +1]; Rd =R
Mem[R3+34] <- R1 ﬁj

Solution: EIEI
Handle with bypass in toreg
memory stage! fle

Cale, SUmme 20050.UCE

Outline

*Pipeline Control

*Forwarding Control

*Hazard Control

I@ SR

ACarle Sunmer

Data Hazard: Loads (2/4)

» Called “interlock”

IF_: ID/RF

)
sub $t3,510,$t2

and $t5,$t0,$t4

or $t7,5t0,$t6

I@ —

* Hardware must stall pipeline

ACarle, Summer 2005 © uce|

Data Hazard: Loads (4/4)
« Stall is equivalent to nop

($t1) (i

nop

sub $t3,5t0,$t2
and $t5,$t0,$t4

or $t7,5t0,$t6

I@c N

Carle, Summer 2005 0 UCh|

Data Hazard: Loads (1/4)

« Forwarding works if value is available (but not
written back) before it is needed. But consider ...

X

IF élD/Ré
w st0,08t1) []2}
sub $t3,810,$t2 [* %

MEM_ W8

*Need result before it is calculated!
*Must stall use (sub) 1 cycle and then
forward. ...

@ CSGIC110 Ploclining Il (G3) Cale, Summer 200

Data Hazard: Loads (3/4)

eInstruction slot after a load is called
“load delay slot”

«|If that instruction uses the result of the
load, then the hardware interlock will
stall it for one cycle.

«If the compiler puts an unrelated
instruction in that slot, then no stall

+Letting the hardware stall the instruction
in the delay slot is equivalent to putting
anop in the slot (except the latter uses
more code space)

S 61C 119 Pipolining 11 (35) ACarle Summer

Hazards / Stalling

In general:

«For each stage i that has reg inputs

«If I's reg is being written later on in the pipe
but is not ready yet

- Stages 0 to i: Stall (Turn CEs off so no change)
- Stage i+1: Make a bubble (do nothing)
- Stages i+2 onward: As usual

In particular:

*ALUinput <€ (MemResult)

@ CS61C 110 Ploelining | 7). Salle, SUmmer 20050 U

Hazards / Stalling

Alternative Approach:

*Detect non-forwarding hazards in decode
*Possible since our hazards are formal.
- Not always the case.
« Stalling then becomes:
- Issue nop to EX stage
- Turn off nextPC update (refetch same inst)
- Turn off InstReg update (re-decode same inst)

Carle Summer 2005 0 Uce|

Stall Logic

« Stall-on-issue is used quite a bit

*More complex processors: many cases
that stall on issue.

*More complex processors: cases that
can’t be detected at decode

- E.g.value needed from mem is not in cache
— proc must stall multiple cycles

ACarle, Summer 2005 © uce|

Stall Logic

1. Detect non-
resolving
hazards.

 2a. Insert Bubble
« 2h. Stall nextPC,
IF/DE

g

g/ Regs . E
[
et < 01C 100 Ploclining Il (3O)

Cale, Summer 200

ycs!

By the way ...

*Notice that our forwarding and stall
logic is stateless!

*Big Idea: Keep it simple!

*Option 1: Store old fetched inst in reg
(“stall_temp”), keep state reg that says
whether to use stall_temp or value
coming off inst mem.

*Option 2: Re-fetch old value by turning
off PC update.

ACarle Summer

