
CS 61C L23 VM I (1) A Carle, Summer 2005 © UCB

inst.eecs.berkeley.edu/~cs61c/su05
CS61C : Machine Structures

Lecture #23: VM I

2005-08-1

Andy Carle

CS 61C L23 VM I (2) A Carle, Summer 2005 © UCB

Outline

• Cache Review
• Virtual Memory

CS 61C L23 VM I (3) A Carle, Summer 2005 © UCB

Improving Miss Penalty
• When caches first became popular,
Miss Penalty ~ 10 processor clock
cycles

• Today 2400 MHz Processor (0.4 ns per
clock cycle) and 80 ns to go to DRAM
⇒ 200 processor clock cycles!

Proc $2

D
R

A
M$

MEM

Solution: another cache between memory and
the processor cache: Second Level (L2) Cache

CS 61C L23 VM I (4) A Carle, Summer 2005 © UCB

Analyzing Multi-level cache hierarchy

Proc $2

D
R

A
M$

L1 hit
time

L1 Miss Rate
L1 Miss Penalty

Avg Mem Access Time =
L1 Hit Time + L1 Miss Rate * L1 Miss Penalty

L1 Miss Penalty = AMATL2 =
L2 Hit Time + L2 Miss Rate * L2 Miss Penalty

Avg Mem Access Time =
L1 Hit Time + L1 Miss Rate *
(L2 Hit Time + L2 Miss Rate * L2 Miss Penalty)

L2 hit
time L2 Miss Rate

L2 Miss Penalty

CS 61C L23 VM I (5) A Carle, Summer 2005 © UCB

Typical Scale

• L1
• size: tens of KB
• hit time: complete in one clock cycle
• miss rates: 1-5%

• L2:
• size: hundreds of KB
• hit time: few clock cycles
• miss rates: 10-20%

• L2 miss rate is fraction of L1 misses
that also miss in L2

• why so high?

CS 61C L23 VM I (6) A Carle, Summer 2005 © UCB

Example: with L2 cache

• Assume
• L1 Hit Time = 1 cycle
• L1 Miss rate = 5%
• L2 Hit Time = 5 cycles
• L2 Miss rate = 15% (% L1 misses that miss)
• L2 Miss Penalty = 200 cycles

• L1 miss penalty = 5 + 0.15 * 200 = 35
• Avg mem access time = 1 + 0.05 x 35

= 2.75 cycles

CS 61C L23 VM I (7) A Carle, Summer 2005 © UCB

Example: without L2 cache

• Assume
• L1 Hit Time = 1 cycle
• L1 Miss rate = 5%
• L1 Miss Penalty = 200 cycles

• Avg mem access time = 1 + 0.05 x 200
= 11 cycles

• 4x faster with L2 cache! (2.75 vs. 11)

CS 61C L23 VM I (8) A Carle, Summer 2005 © UCB

Cache Summary

• Cache design choices:
• size of cache: speed v. capacity
• direct-mapped v. associative
• for N-way set assoc: choice of N
• block replacement policy
• 2nd level cache?
• Write through v. write back?

• Use performance model to pick
between choices, depending on
programs, technology, budget, ...

CS 61C L23 VM I (9) A Carle, Summer 2005 © UCB

VM

CS 61C L23 VM I (10) A Carle, Summer 2005 © UCB

Generalized Caching

• We’ve discussed memory caching in
detail. Caching in general shows up
over and over in computer systems

• Filesystem cache
• Web page cache
• Game Theory databases / tablebases
• Software memoization
• Others?

• Big idea: if something is expensive but
we want to do it repeatedly, do it once
and cache the result.

CS 61C L23 VM I (11) A Carle, Summer 2005 © UCB

Another View of the Memory Hierarchy
Regs

L2 Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Upper Level

Lower Level

Faster

Larger

Cache
Blocks

Thus far

{Next:
Virtual
Memory

CS 61C L23 VM I (12) A Carle, Summer 2005 © UCB

Memory Hierarchy Requirements

• What else might we want from our memory
subsystem? …

• Share memory between multiple processes but
still provide protection – don’t let one program
read/write memory from another

- Emacs on star

• Address space – give each process the illusion
that it has its own private memory

- Implicit in our model of a linker

• Called Virtual Memory

CS 61C L23 VM I (13) A Carle, Summer 2005 © UCB

Virtual Memory Big Ideas

• Each address that a program uses (pc,
$sp, $gp, .data, etc) is fake (even after
linking)!

• Processor inserts new step:
• Every time we reference an address (in IF
or MEM) …

• Translate fake address to real one.

virtual physical

CS 61C L23 VM I (14) A Carle, Summer 2005 © UCB

VM Ramifications

• Immediate consequences:
• Each program can operate in isolation!
• OS can decide where and when each goes in memory!
• HW/OS can grant different rights to different

processes on same chunk of physical mem!
• Big question:

• How do we manage the VA PA mappings?

virtual
address
(inst. fetch
load, store)

Program
operates in
its virtual
address
space

HW
mapping

physical
address
(inst. fetch
load, store)

Physical
memory
(caches)

CS 61C L23 VM I (15) A Carle, Summer 2005 © UCB

(Weak) Analogy

• Book title like virtual address
• Library of Congress call number like
physical address

• Card catalogue like page table,
mapping from book title to call number

• On card for book, in local library vs. in
another branch like valid bit indicating
in main memory vs. on disk

• On card, available for 2-hour in library
use (vs. 2-week checkout) like access
rights

CS 61C L23 VM I (16) A Carle, Summer 2005 © UCB

VM

• Ok, now how do we implement it?

• Simple solution:
• Linker assumes start addr at 0x0.
• Each process has a $base and $bound:

- $base: start of physical address space
- $bound: size of physical address space

• Algorithms:
- VA PA Mapping: PA = VA + $base
- Bounds check: VA < $bound

CS 61C L23 VM I (17) A Carle, Summer 2005 © UCB

Simple Example: Base and Bound Reg

0

∞

OS

User A

User B

User C

$base

$base+
$bound

• Same flaws as freelist
malloc!

• Also: what if process size
> mem

• What to do??

Enough space for User D,
but discontinuous
(“fragmentation problem”)

so what’s wrong?

CS 61C L23 VM I (18) A Carle, Summer 2005 © UCB

VM Observations

• Working set of process is small, but
distributed all over address space

• Arbitrary mapping function,
- keep working set in memory
- rest on disk or unallocated.

• Fragmentation comes from variable-
sized physical address spaces

• Allocate physical memory in fixed-sized
chunks (1 mapping per chunk)

• FA placement of chunks
- i.e. any V chunk of any process can map to

any P chunk of memory.

CS 61C L23 VM I (19) A Carle, Summer 2005 © UCB

Mapping Virtual Memory to Physical Memory

0

Physical Memory

∞
Virtual Memory

Code

Static

Heap

Stack

64 MB

• Divide into equal sized
chunks (about 4 KB - 8 KB)

0

• Any chunk of Virtual Memory
assigned to any chunk of
Physical Memory (“page”)

CS 61C L23 VM I (20) A Carle, Summer 2005 © UCB

Paging Organization

Addr
Trans
MAP

Page is unit
of mapping

Page also unit of
transfer from disk
to physical memory

page 0 1K
1K

1K

0
1024

31744

Virtual
MemoryVA

page 1

page 31

1K2048 page 2
...... ...

1KB Pages

VPN

page 00
1024

7168

PA
Physical
Memory

1K
1K

1K

page 1

page 7
...... ...

PPN

CS 61C L23 VM I (21) A Carle, Summer 2005 © UCB

Virtual Memory Mapping Function

• Use table lookup (“Page Table”) for
mappings: V Page number is index

• Mapping Function
• Physical Offset = Virtual Offset
• Physical Page Number
= PageTable[Virtual Page Number]

FYI: P.P.N. also called “Page Frame” or “Frame #”.

Page Number Offset

CS 61C L23 VM I (22) A Carle, Summer 2005 © UCB

Address Mapping: Page Table

Virtual Address:
VPN offset

Page Table located in physical memory

index
into
page
table

PPN

Physical
Memory
Address

Page Table

Val
-id

Access
Rights

Physical
Page
Address

.

V A.R. P. P. A.

...

...

offset

CS 61C L23 VM I (23) A Carle, Summer 2005 © UCB

Page Table

• A page table: mapping function
• There are several different ways, all up to
the operating system, to keep this data
around.

• Each process running in the operating
system has its own page table

- Historically, OS changes page tables by
changing contents of Page Table Base
Register
– Not anymore! We’ll explain soon.

CS 61C L23 VM I (24) A Carle, Summer 2005 © UCB

Requirements revisited

• Remember the motivation for VM:
• Sharing memory with protection

• Different physical pages can be allocated
to different processes (sharing)

• A process can only touch pages in its
own page table (protection)

• Separate address spaces
• Since programs work only with virtual
addresses, different programs can have
different data/code at the same address!

CS 61C L23 VM I (25) A Carle, Summer 2005 © UCB

Page Table Entry (PTE) Format

• Contains either Physical Page Number
or indication not in Main Memory

• OS maps to disk if Not Valid (V = 0)

• If valid, also check if have permission
to use page: Access Rights (A.R.) may
be Read Only, Read/Write, Executable

...
Page Table

Val
-id

Access
Rights

Physical
Page
Number

V A.R. P. P. N.

V A.R. P. P.N.

...

P.T.E.

CS 61C L23 VM I (26) A Carle, Summer 2005 © UCB

Paging/Virtual Memory Multiple Processes
User B:

Virtual Memory
∞

Code

Static

Heap

Stack

0
Code

Static

Heap

Stack

A
Page
Table

B
Page
Table

User A:
Virtual Memory
∞

0
0

Physical
Memory

64 MB

CS 61C L23 VM I (27) A Carle, Summer 2005 © UCB

Comparing the 2 levels of hierarchy
Cache Version Virtual Memory vers.
Block or Line Page
Miss Page Fault
Block Size: 32-64B Page Size: 4K-8KB
Placement: Fully Associative
Direct Mapped,
N-way Set Associative
Replacement: Least Recently Used
LRU or Random (LRU)
Write Thru or Back Write Back

CS 61C L23 VM I (28) A Carle, Summer 2005 © UCB

Notes on Page Table
• OS must reserve “Swap Space” on disk
for each process

• To grow a process, ask Operating System
• If unused pages, OS uses them first
• If not, OS swaps some old pages to disk
• (Least Recently Used to pick pages to swap)

• Will add details, but Page Table is essence
of Virtual Memory

CS 61C L23 VM I (29) A Carle, Summer 2005 © UCB

Peer Instruction

A. Locality is important yet different
for cache and virtual memory
(VM): temporal locality for caches
but spatial locality for VM

B. Cache management is done by
hardware (HW) and page table
management is done by software

C. VM helps both with security and
cost

CS 61C L23 VM I (30) A Carle, Summer 2005 © UCB

And in conclusion…

• Manage memory to disk? Treat as cache
• Included protection as bonus, now critical
• Use Page Table of mappings for each user
vs. tag/data in cache

• Virtual Memory allows protected sharing
of memory between processes

• Spatial Locality means Working Set of
Pages is all that must be in memory for
process to run fairly well

