inst._eecs.berkeley.edu/~cs61c/su05

CS61C : Machine Structures
Lecture #24: VM Il

e

e
W Y
U ""\'1""‘\

2005-08-02

Address Mapping: Page Table
Virtual Address:

Page Table

Vi AR (PP A

index| |valiAccessiPhysical [PLEEN l:|
into -id iRights iPage

page Address Physical
table Memory
Address

@ Andy Carle

Page Table

*A page table: mapping function

e There are several different ways, all up to
the operating system, to keep this data
around.

«Each process running in the operating
system has its own page table
- Historically, OS changes page tables by
changing contents of Page Table Base
Register

ACarle, Summer 2005 © uce|

Page Table Entry (PTE) Format

»Contains either Physical Page Number
or indication not in Main Memory

*OS maps to disk if Not Valid (V =0)

Page Table |-V i A.R. iP.P.N. \

ValiAccessiPhysical
-id iRights :Page “— P.T.E.

Number /

Vi AR iP.P.N.

«If valid, also check if have permission
to use page: Access Rights (A.R.) may
@ be Read Only, Rea rite, Executable

@ Page Table located in physical memory

CSEICI2VIMIQR) Cale, Summer 200

Requirements revisited

*Remember the motivation for VM:

«Sharing memory with protection

« Different physical pages can be allocated
to different processes (sharing)

* A process can only touch pages in its
own page table (protection)
*Separate address spaces

*Since programs work only with virtual
addresses, different programs can have
different data/code at the same address!

@ CS6ICI28 VI (4) ACarle Summer

Paging/Virtual Memory Multiple Processes

User A: User B:
Virtual Memory . Virtual Memory
00 Physical 0
Memory Stack
64 MB

{ 1
S "\
‘ \l\

Static Static
A B
~odnl/ Page 0 Page
0 Table Table gL~

CSEICL26 V() Salle, SUmmer 20050 U

Comparing the 2 levels of hierarchy
Cache Version Virtual Memory vers.

Block or Line Page

Miss Page Fault

Block Size: 32-64B Page Size: 4K-8KB
Placement: Fully Associative

Direct Mapped,
N-way Set Associative

Replacement: Least Recently Used
LRU or Random (LRU)

lﬂ;ite Thru or Back Write Back

CSEICI2a VNI D) ACarle Sunmer

VM Problems and Solutions

«TLB
*Paged Page Tables

Notes on Page Table

*OS must reserve “Swap Space” on disk
for each process

*To grow a process, ask Operating System
«If unused pages, OS uses them first
«If not, OS swaps some old pages to disk
« (Least Recently Used to pick pages to swap)

*Will add details, but Page Table is essence
of Virtual Memory

@c S1C124 NI (@) Cale, Summer 200

Translation Look-Aside Buffers (TLBsS)
*TLBs usually small, typically 32 - 256 entries

« Like any other cache, the TLB can be direct
mapped, set associative, or fully associative

____VA hit PA miss
Processor LoToLkBup Cache Mlt\a/lr?wlgry
lmiss hit

ITrans
lation
: data

On TLB miss, get page table entry from main memory

CSEICL2aVMIGY Carle, Summer 2005 0 UCh|

Virtual Memory Problem #1

*Map every address = 1 indirection via
Page Table in memory per virtual
address = 1 virtual memory accesses =
2 physical memory accesses = SLOW!

*Observation: since locality in pages of
data, there must be locality in virtual
address translations of those pages

*Since small is fast, why not use a small
cache of virtual to physical address
translations to make translation fast?

For historical reasons, cache is called a
Translation Lookaside Buffer, or TLB

Typical TLB Format

Virtual [Physical |Dirty| Ref|Valid| Access
Address | Address Rights

* TLB just a cache on the page table mappings

* TLB access time comparable to cache
(much less than main memory access time)
« Dirty: since use write back, need to know whether
or not to write page to disk when replaced
*Ref: Used to help calculate LRU on replacement
* Cleared by OS periodically, then checked to
see if page was referenced

CSEICI26 V(1) Salle, SUmmer 20050 U

What if notin TLB?

*Option 1: Hardware checksgoage_table
_arrllcljaloads new Page Table Entry into

*Option 2: Hardware traps to OS, up to
OS to decide what to do

*MIPS follows Option 2: Hardware
knows nothing about page table

@c AC L2 VI G3) Calle Summer

What if we don't have enough memory?

*We choose some other page]
belon%lng.to a program and transfer it
onto the disk if it is dirty

«If clean (disk copy is up-to-date),
just overwrite that data in memory

*We chose the page to evict based on
replacement policy (e.g., LRU)

*And update that program's page table
to reflect the fact that its memory
moved somewhere else

«If continuously swap between disk and
memory, called Thrashing

CS61CI2a VNI () A Carle, Summer 2005 © Ucg|

Virtual Memory Problem #1 Recap

*Slow:
«Every memory access requires:
- laccessto PT to get VPN->PPN translation
- laccessto MEM to get data at PA
*Solution:

*Cache the Page Table
- Make common case fast
- PT cache called “TLB”

*“block size” is just 1 VPN->PN mapping
*TLB associativity

@c ACL2aVMIGT) Carle, Summer 2005 0 UCh|

What if the data is on disk?

*We load the page off the disk into a
free block of memory, using a DMA
(Direct Memory Access — very fast!)
transfer

«Meantime we switch to some other
process waiting to be run

*When the DMA is complete, we get an
interrupt and update the process's
page table

*So when we switch back to the task, the
desired data will be in memory

@ CSEICI26VI (e Cale, Summer 200

Question

*Why is the TLB so small yet so
effective?

*Because each entry corresponds to
pagesize # of addresses

*Why does the TLB typically have high
associativity? What'is the)
“associativity” of VA»PA mappings?

*Because the miss penalty dominates the
AMAT for VM.

*High associativity = lower miss rates.
- VPN->PPN mappings are fully associative

CS6ICI2a VI (16) ACarle Summer

Virtual Memory Problem #2

*Page Table too big!

« 4GB Virtual Memory + 1 KB page
= ~ 4 million Page Table Entries
= 16 MB just for Page Table for 1 process,
8 processes = 256 MB for Page Tables!

*Spatial Locality to the rescue
«Each page is 4 KB, lots of nearby references
«But large page size wastes resources
*Pages in program’s working set will
exhibit temporal and spatial locality.
*S0O ...

Solutions

*Page the Page Table itself!

*Works, but must be careful with never-
ending page faults

*Pin some PT pages to memory
«2-level page table
* Solutions tradeoff in-memory PT size
for slower TLB miss

*Make TLB large enough, highly associative
so rarely miss on address translation

*CS 162 will go over more options and in
greater depth

@ CSEICI2a VNI GO Carle Summer 2005 0 Uce|

Administrivia

*Proj 3 Due Friday
*Proj 4 Out Soon

*HW 8? Probably, but it will be short

ACarle, Summer 2005 © uce|

Page Table Shrink :

*Single Page Table

| Page Number |Offset|

20 bits 12 bits
*Multilevel Page Table

I Super Page No. I Page Number I Offset I
10 bits 10 bits 12 bits

+Only have second level page table for
valid entries of super level page table

*Book Exercises explore exact space

Three Advantages of Virtual Memory

1) Translation:
*Program can be given consistent view of
memory, even though physical memory is
scrambled (illusion of contiguous memory)

 All programs starting at same set address

e [llusion of ~ infinite memory (232 or 254 bytes)
» Makes multiple processes reasonable

*Only the most important part of program
(“Working Set”) must be in physical memory

* Contiguous structures (like stacks) use only
as much physical memory as necessary yet
still grow later

Carle, Summer 2005 0 UCh|

savings

2-level Page Table
Virtual Memory

2nd Level Super on
Page Tables Page Stack
Table I
Physical)
64 Memory e i
MB ./ Heap

Cache, Proc and VM in IF (A Fine Slide)

FetchPCo+—rn—
——————EXE; PC € PC+4
tlb hit? ’
\ -

o v TVPN>PPNMap -~ cqche hit? -~ Load into IR

Trap os n
’i Mem hit?

pt “hitrp — Update TLB n

n y XXX

Cache full?

Free mem? — Restart
y

nl Pick victim

Pick victim \
\ ite policy?
Victim to disk oy rite policy?
Rty wt
Load new page W if dirty
Evict victim

Update PT
3 Load block

Update TLB
N !
Restart Restart
CSEICI2a Nl 20

Cale, SUmme 20050.UCE

Cache, Proc and VM in IF (A Fine Slide)

FettchPCor =
tlb hit?
n

———EXE; PC € PC+4
v - . /‘

v VPN->PPN Map ., cache hit? 5 Load into IR

Trap os n

\ Mem hit?
pt“hit"? <~ Update TLB n
n Y XXX

Free mem? — Restart Cache full?
| ! Pick victim n
Pick victim

A
Victim to disk o Vrite policy? Where is the

/ wB ifdirty |

page fault?

Load new page
Evict victim

Update PT
N
Update TLB N Load block
Restart Restart
CSEICI20VICD) ACale, SUe 20050 UCE

Q1: Where block placed in upper level?
*Block 12 placed in 8 block cache:

«Fully associative, direct mapped, 2-way set
associative

*S.A. Mapping = Block Number Mod Number Sets
Block 1534567 B":‘Cok 01234567 Block 01234567
no. " no.

Fully associative:

Set Set Set Set
012 3
block 12 can go

Direct mapped:

block 12 can go Set associative:
anywhere only into block 4 block 12 can go
(12 mod 8) anywhere in set 0
Block-frame address (12 mod 4)
Block 1111111111222222222233
M0 01234567890123456789012345678901
Cseici2eviuGn ACarle, Summer 2005 0 ucs

Q3: Which block replaced on a miss?
*Easy for Direct Mapped
*Set Associative or Fully Associative:

* Random
¢ LRU (Least Recently Used)

Miss Rates

Associativity:2-way 4-way 8-way
Size LRU Ran LRU Ran LRU Ran
16 KB 52% 57% 4.7% 53% 4.4% 5.0%
64KB 1.9% 2.0% 15% 1.7% 14% 1.5%

KB 1.15%1.17% 1.13% 1.13% 1.12% 1.12%

CS61CL2a VNI 2O) Carle Summer ucpl

$&VM Review: 4 Qs for any Mem. Hierarchy

*Q1: Where can a block be placed in the upper
level?

*Q2: How is a block found if it is in the upper
level?

*Q3: Which block should be replaced on a
miss?

*Q4: What happens on a write?

Cale, Summer 200

ycs!

Q2: How is a block found in upper level?

[Block Address [Block
[Tag index | offset
—

N
Set Select

Data Select

*Direct indexing (using index and block
offset), tag compares, or combination

eIncreasing associativity shrinks index,
expands tag

CS6ICI28 VI 28) ACarle Summer

Q4: What to do on a write hit?

e Write-through

eupdate the word in cache block and
corresponding word in memory

e Write-back
eupdate word in cache block
«allow memory word to be “stale”

=> add ‘dirty’ bit to each line indicating that
memory be updated when block is replaced

=> OS flushes cache before /0 1!

e Performance trade-offs?
*WT: read misses cannot result in writes
*WB: no writes of repeated writes

CSEICI26 VI (30)

Cale, SUmme 20050.UCE

