
CS 61C L24 VM II (1) A Carle, Summer 2005 © UCB

inst.eecs.berkeley.edu/~cs61c/su05
CS61C : Machine Structures

Lecture #24: VM II

2005-08-02

Andy Carle
CS 61C L24 VM II (2) A Carle, Summer 2005 © UCB

Address Mapping: Page Table

Virtual Address:
VPN offset

Page Table located in physical memory

index
into
page
table

PPN

Physical
Memory
Address

Page Table

Val
-id

Access
Rights

Physical
Page
Address

.

V A.R. P. P. A.

...

...

offset

CS 61C L24 VM II (3) A Carle, Summer 2005 © UCB

Page Table

• A page table: mapping function
• There are several different ways, all up to
the operating system, to keep this data
around.

• Each process running in the operating
system has its own page table

- Historically, OS changes page tables by
changing contents of Page Table Base
Register

CS 61C L24 VM II (4) A Carle, Summer 2005 © UCB

Requirements revisited

• Remember the motivation for VM:
• Sharing memory with protection

• Different physical pages can be allocated
to different processes (sharing)

• A process can only touch pages in its
own page table (protection)

• Separate address spaces
• Since programs work only with virtual
addresses, different programs can have
different data/code at the same address!

CS 61C L24 VM II (5) A Carle, Summer 2005 © UCB

Page Table Entry (PTE) Format

• Contains either Physical Page Number
or indication not in Main Memory

• OS maps to disk if Not Valid (V = 0)

• If valid, also check if have permission
to use page: Access Rights (A.R.) may
be Read Only, Read/Write, Executable

...
Page Table

Val
-id

Access
Rights

Physical
Page
Number

V A.R. P. P. N.

V A.R. P. P.N.

...

P.T.E.

CS 61C L24 VM II (6) A Carle, Summer 2005 © UCB

Paging/Virtual Memory Multiple Processes
User B:

Virtual Memory
∞

Code

Static

Heap

Stack

0
Code

Static

Heap

Stack

A
Page
Table

B
Page
Table

User A:
Virtual Memory
∞

0
0

Physical
Memory

64 MB

CS 61C L24 VM II (7) A Carle, Summer 2005 © UCB

Comparing the 2 levels of hierarchy
Cache Version Virtual Memory vers.
Block or Line Page
Miss Page Fault
Block Size: 32-64B Page Size: 4K-8KB
Placement: Fully Associative
Direct Mapped,
N-way Set Associative
Replacement: Least Recently Used
LRU or Random (LRU)
Write Thru or Back Write Back

CS 61C L24 VM II (8) A Carle, Summer 2005 © UCB

Notes on Page Table
• OS must reserve “Swap Space” on disk
for each process

• To grow a process, ask Operating System
• If unused pages, OS uses them first
• If not, OS swaps some old pages to disk
• (Least Recently Used to pick pages to swap)

• Will add details, but Page Table is essence
of Virtual Memory

CS 61C L24 VM II (9) A Carle, Summer 2005 © UCB

VM Problems and Solutions

• TLB
• Paged Page Tables

CS 61C L24 VM II (10) A Carle, Summer 2005 © UCB

Virtual Memory Problem #1

• Map every address ⇒ 1 indirection via
Page Table in memory per virtual
address ⇒ 1 virtual memory accesses =
2 physical memory accesses ⇒ SLOW!

• Observation: since locality in pages of
data, there must be locality in virtual
address translations of those pages

• Since small is fast, why not use a small
cache of virtual to physical address
translations to make translation fast?

• For historical reasons, cache is called a
Translation Lookaside Buffer, or TLB

CS 61C L24 VM II (11) A Carle, Summer 2005 © UCB

Translation Look-Aside Buffers (TLBs)
•TLBs usually small, typically 32 - 256 entries

• Like any other cache, the TLB can be direct
mapped, set associative, or fully associative

Processor
TLB

Lookup Cache Main
Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

On TLB miss, get page table entry from main memory

CS 61C L24 VM II (12) A Carle, Summer 2005 © UCB

Typical TLB Format

Virtual Physical Dirty Ref Valid Access
Address Address Rights

• TLB just a cache on the page table mappings

• TLB access time comparable to cache
(much less than main memory access time)

• Dirty: since use write back, need to know whether
or not to write page to disk when replaced
•Ref: Used to help calculate LRU on replacement

• Cleared by OS periodically, then checked to
see if page was referenced

CS 61C L24 VM II (13) A Carle, Summer 2005 © UCB

What if not in TLB?

• Option 1: Hardware checks page table
and loads new Page Table Entry into
TLB

• Option 2: Hardware traps to OS, up to
OS to decide what to do

• MIPS follows Option 2: Hardware
knows nothing about page table

CS 61C L24 VM II (14) A Carle, Summer 2005 © UCB

What if the data is on disk?

• We load the page off the disk into a
free block of memory, using a DMA
(Direct Memory Access – very fast!)
transfer

• Meantime we switch to some other
process waiting to be run

• When the DMA is complete, we get an
interrupt and update the process's
page table

• So when we switch back to the task, the
desired data will be in memory

CS 61C L24 VM II (15) A Carle, Summer 2005 © UCB

What if we don't have enough memory?

• We choose some other page
belonging to a program and transfer it
onto the disk if it is dirty

• If clean (disk copy is up-to-date),
just overwrite that data in memory

• We chose the page to evict based on
replacement policy (e.g., LRU)

• And update that program's page table
to reflect the fact that its memory
moved somewhere else

• If continuously swap between disk and
memory, called Thrashing

CS 61C L24 VM II (16) A Carle, Summer 2005 © UCB

Question

• Why is the TLB so small yet so
effective?

• Because each entry corresponds to
pagesize # of addresses

• Why does the TLB typically have high
associativity? What is the
“associativity” of VA PA mappings?

• Because the miss penalty dominates the
AMAT for VM.

• High associativity lower miss rates.
- VPN PPN mappings are fully associative

CS 61C L24 VM II (17) A Carle, Summer 2005 © UCB

Virtual Memory Problem #1 Recap

• Slow:
• Every memory access requires:

- 1 access to PT to get VPN->PPN translation
- 1 access to MEM to get data at PA

• Solution:
• Cache the Page Table

- Make common case fast
- PT cache called “TLB”

• “block size” is just 1 VPN->PN mapping
• TLB associativity

CS 61C L24 VM II (18) A Carle, Summer 2005 © UCB

Virtual Memory Problem #2

• Page Table too big!
• 4GB Virtual Memory ÷ 1 KB page

⇒ ~ 4 million Page Table Entries
⇒ 16 MB just for Page Table for 1 process,
8 processes ⇒ 256 MB for Page Tables!

• Spatial Locality to the rescue
• Each page is 4 KB, lots of nearby references
• But large page size wastes resources

• Pages in program’s working set will
exhibit temporal and spatial locality.

• So …

CS 61C L24 VM II (19) A Carle, Summer 2005 © UCB

Solutions

• Page the Page Table itself!
• Works, but must be careful with never-
ending page faults

• Pin some PT pages to memory

• 2-level page table
• Solutions tradeoff in-memory PT size
for slower TLB miss

• Make TLB large enough, highly associative
so rarely miss on address translation

• CS 162 will go over more options and in
greater depth

CS 61C L24 VM II (20) A Carle, Summer 2005 © UCB

Page Table Shrink :

• Single Page Table

Page Number Offset
20 bits 12 bits

• Multilevel Page Table

Page NumberSuper Page No. Offset

10 bits 10 bits 12 bits

• Only have second level page table for
valid entries of super level page table

• Book Exercises explore exact space
savings

CS 61C L24 VM II (21) A Carle, Summer 2005 © UCB

Administrivia

• Proj 3 Due Friday
• Proj 4 Out Soon

• HW 8? Probably, but it will be short

CS 61C L24 VM II (22) A Carle, Summer 2005 © UCB

2-level Page Table

0

Physical
Memory64

MB

Virtual Memory
∞

Code

Static

Heap

Stack

0

...

2nd Level
Page Tables

Super
Page
Table

CS 61C L24 VM II (23) A Carle, Summer 2005 © UCB

Three Advantages of Virtual Memory
1) Translation:

• Program can be given consistent view of
memory, even though physical memory is
scrambled (illusion of contiguous memory)

• All programs starting at same set address
• Illusion of ~ infinite memory (232 or 264 bytes)
• Makes multiple processes reasonable

• Only the most important part of program
(“Working Set”) must be in physical memory

• Contiguous structures (like stacks) use only
as much physical memory as necessary yet
still grow later

CS 61C L24 VM II (24) A Carle, Summer 2005 © UCB

Cache, Proc and VM in IF (A Fine Slide)
Fetch PC

Trap os

pt “hit”?

Free mem?

Pick victim

Victim to disk

Load new page

Update PT
Update TLB

Restart

Update TLB

Restart

VPN->PPN Map Cache hit?

Mem hit?

Cache full?

Pick victim

Write policy?

WB if dirty

Evict victim

Load block

Restart

XXX

Load into IR

EXE; PC PC+4

y

tlb hit?
n

n

n

wb

n

n

n
y

y

wt

y

y

y

CS 61C L24 VM II (25) A Carle, Summer 2005 © UCB

Cache, Proc and VM in IF (A Fine Slide)
Fetch PC

Trap os

pt “hit”?

Free mem?

Pick victim

Victim to disk

Load new page

Update PT
Update TLB

Restart

Update TLB

Restart

VPN->PPN Map Cache hit?

Mem hit?

Cache full?

Pick victim

Write policy?

WB if dirty

Evict victim

Load block

Restart

XXX

Load into IR

EXE; PC PC+4

y

tlb hit?
n

n

n

wb

n

n

n
y

y

wt

y

y

y

Where is the
page fault?

CS 61C L24 VM II (26) A Carle, Summer 2005 © UCB

$&VM Review: 4 Qs for any Mem. Hierarchy

• Q1: Where can a block be placed in the upper
level? (Block placement)

• Q2: How is a block found if it is in the upper
level?
(Block identification)

• Q3: Which block should be replaced on a
miss?
(Block replacement)

• Q4: What happens on a write?
(Write strategy)

CS 61C L24 VM II (27) A Carle, Summer 2005 © UCB

• Block 12 placed in 8 block cache:
• Fully associative, direct mapped, 2-way set
associative

• S.A. Mapping = Block Number Mod Number Sets
0 1 2 3 4 5 6 7Block

no.

Fully associative:
block 12 can go
anywhere

0 1 2 3 4 5 6 7Block
no.

Direct mapped:
block 12 can go
only into block 4
(12 mod 8)

0 1 2 3 4 5 6 7Block
no.

Set associative:
block 12 can go
anywhere in set 0
(12 mod 4)

Set
0

Set
1

Set
2

Set
3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Block-frame address

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3Block
no.

Q1: Where block placed in upper level?

CS 61C L24 VM II (28) A Carle, Summer 2005 © UCB

• Direct indexing (using index and block
offset), tag compares, or combination

• Increasing associativity shrinks index,
expands tag

Block
offset

Block Address
Tag Index

Q2: How is a block found in upper level?

Set Select

Data Select

CS 61C L24 VM II (29) A Carle, Summer 2005 © UCB

•Easy for Direct Mapped
•Set Associative or Fully Associative:

• Random
• LRU (Least Recently Used)

Miss Rates
Associativity:2-way 4-way 8-way
Size LRU Ran LRU Ran LRU Ran
16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Q3: Which block replaced on a miss?

CS 61C L24 VM II (30) A Carle, Summer 2005 © UCB

Q4: What to do on a write hit?
• Write-through

• update the word in cache block and
corresponding word in memory

• Write-back
• update word in cache block
• allow memory word to be “stale”
=> add ‘dirty’ bit to each line indicating that
memory be updated when block is replaced

=> OS flushes cache before I/O !!!

• Performance trade-offs?
• WT: read misses cannot result in writes
• WB: no writes of repeated writes

