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Page Table

• A page table: mapping function 
• There are several different ways, all up to 
the operating system, to keep this data 
around.

• Each process running in the operating 
system has its own page table

- Historically, OS changes page tables by 
changing contents of Page Table Base 
Register
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Requirements revisited

• Remember the motivation for VM:
• Sharing memory with protection

• Different physical pages can be allocated 
to different processes (sharing)

• A process can only touch pages in its 
own page table (protection)

• Separate address spaces
• Since programs work only with virtual 
addresses, different programs can have 
different data/code at the same address!
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Page Table Entry (PTE) Format

• Contains either Physical Page Number 
or indication not in Main Memory

• OS maps to disk if Not Valid  (V = 0)

• If valid, also check if have permission 
to use page: Access Rights (A.R.) may 
be Read Only, Read/Write, Executable
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Paging/Virtual Memory Multiple Processes
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Comparing the 2 levels of hierarchy
Cache Version Virtual Memory vers.
Block or Line Page
Miss Page Fault
Block Size: 32-64B Page Size: 4K-8KB
Placement: Fully Associative
Direct Mapped, 
N-way Set Associative
Replacement: Least Recently Used
LRU or Random (LRU)
Write Thru or Back Write Back

CS 61C L24 VM II (8) A Carle, Summer 2005 © UCB

Notes on Page Table
• OS must reserve “Swap Space” on disk 
for each process

• To grow a process, ask Operating System
• If unused pages, OS uses them first
• If not, OS swaps some old pages to disk
• (Least Recently Used to pick pages to swap)

• Will add details, but Page Table is essence 
of Virtual Memory
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VM Problems and Solutions

• TLB
• Paged Page Tables
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Virtual Memory Problem #1

• Map every address ⇒ 1 indirection via 
Page Table in memory per virtual 
address ⇒ 1 virtual memory accesses = 
2 physical memory accesses ⇒ SLOW!

• Observation: since locality in pages of 
data, there must be locality in virtual 
address translations of those pages

• Since small is fast, why not use a small 
cache of virtual to physical address 
translations to make translation fast?

• For historical reasons, cache is called a 
Translation Lookaside Buffer, or TLB
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Translation Look-Aside Buffers (TLBs)
•TLBs usually small, typically 32 - 256 entries

• Like any other cache, the TLB can be direct 
mapped, set associative, or fully associative 

Processor
TLB

Lookup Cache Main
Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

On TLB miss, get page table entry from main memory
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Typical TLB Format

Virtual Physical Dirty Ref Valid Access
Address Address Rights

• TLB just a cache on the page table mappings

• TLB access time comparable to cache 
(much less than main memory access time) 

• Dirty: since use write back, need to know whether 
or not to write page to disk when replaced
•Ref: Used to help calculate LRU on replacement 

• Cleared by OS periodically, then checked to 
see if page was referenced
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What if not in TLB?

• Option 1: Hardware checks page table 
and loads new Page Table Entry into 
TLB

• Option 2: Hardware traps to OS, up to 
OS to decide what to do

• MIPS follows Option 2: Hardware 
knows nothing about page table
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What if the data is on disk?

• We load the page off the disk into a 
free block of memory, using a DMA 
(Direct Memory Access – very fast!) 
transfer

• Meantime we switch to some other 
process waiting to be run

• When the DMA is complete, we get an 
interrupt and update the process's 
page table

• So when we switch back to the task, the 
desired data will be in memory

CS 61C L24 VM II (15) A Carle, Summer 2005 © UCB

What if we don't have enough memory?

• We choose some other page 
belonging to a program and transfer it 
onto the disk if it is dirty

• If clean (disk copy is up-to-date), 
just overwrite that data in memory

• We chose the page to evict based on 
replacement policy (e.g., LRU)

• And update that program's page table 
to reflect the fact that its memory 
moved somewhere else

• If continuously swap between disk and 
memory, called Thrashing

CS 61C L24 VM II (16) A Carle, Summer 2005 © UCB

Question

• Why is the TLB so small yet so 
effective?

• Because each entry corresponds to 
pagesize # of addresses

• Why does the TLB typically have high 
associativity? What is the 
“associativity” of VA PA mappings?

• Because the miss penalty dominates the 
AMAT for VM. 

• High associativity lower miss rates.
- VPN PPN mappings are fully associative
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Virtual Memory Problem #1 Recap

• Slow:
• Every memory access requires:

- 1 access to PT to get VPN->PPN translation
- 1 access to MEM to get data at PA

• Solution:
• Cache the Page Table

- Make common case fast
- PT cache called “TLB”

• “block size” is just 1 VPN->PN mapping
• TLB associativity
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Virtual Memory Problem #2

• Page Table too big!
• 4GB Virtual Memory ÷ 1 KB page

⇒ ~ 4 million Page Table Entries
⇒ 16 MB just for Page Table for 1 process,
8 processes ⇒ 256 MB for Page Tables!

• Spatial Locality to the rescue
• Each page is 4 KB, lots of nearby references
• But large page size wastes resources

• Pages in program’s working set will 
exhibit temporal and spatial locality.

• So …
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Solutions

• Page the Page Table itself!
• Works, but must be careful with never-
ending page faults

• Pin some PT pages to memory

• 2-level page table
• Solutions tradeoff in-memory PT size 
for slower TLB miss

• Make TLB large enough, highly associative 
so rarely miss on address translation

• CS 162 will go over more options and in 
greater depth
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Page Table Shrink : 

• Single Page Table

Page Number   Offset
20 bits 12 bits

• Multilevel Page Table

Page NumberSuper Page No. Offset

10 bits 10 bits 12 bits

• Only have second level page table for 
valid entries of super level page table

• Book Exercises explore exact space 
savings

CS 61C L24 VM II (21) A Carle, Summer 2005 © UCB

Administrivia

• Proj 3 Due Friday
• Proj 4 Out Soon

• HW 8?  Probably, but it will be short
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2-level Page Table
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Three Advantages of Virtual Memory
1) Translation:

• Program can be given consistent view of 
memory, even though physical memory is 
scrambled (illusion of contiguous memory)

• All programs starting at same set address
• Illusion of ~ infinite memory (232 or 264 bytes)
• Makes multiple processes reasonable 

• Only the most important part of program 
(“Working Set”) must be in physical memory

• Contiguous structures (like stacks) use only 
as much physical memory as necessary yet 
still grow later
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$&VM Review: 4 Qs for any Mem. Hierarchy

• Q1: Where can a block be placed in the upper 
level? (Block placement)

• Q2: How is a block found if it is in the upper 
level?
(Block identification)

• Q3: Which block should be replaced on a 
miss? 
(Block replacement)

• Q4: What happens on a write? 
(Write strategy)
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• Block 12 placed in 8 block cache:
• Fully associative, direct mapped, 2-way set 
associative

• S.A. Mapping = Block Number Mod Number Sets
0 1 2 3 4 5 6 7Block

no.

Fully associative:
block 12 can go 
anywhere

0 1 2 3 4 5 6 7Block
no.

Direct mapped:
block 12 can go 
only into block 4 
(12 mod 8)

0 1 2 3 4 5 6 7Block
no.

Set associative:
block 12 can go 
anywhere in set 0 
(12 mod 4)

Set
0

Set
1

Set
2

Set
3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Block-frame address

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3Block
no.

Q1: Where block placed in upper level?
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• Direct indexing (using index and block 
offset), tag compares, or combination

• Increasing associativity shrinks index, 
expands tag

Block
offset

Block Address
Tag Index

Q2: How is a block found in upper level?

Set Select

Data Select
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•Easy for Direct Mapped
•Set Associative or Fully Associative:

• Random
• LRU (Least Recently Used)

Miss Rates
Associativity:2-way 4-way 8-way
Size LRU Ran LRU Ran LRU Ran
16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Q3: Which block replaced on a miss?
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Q4: What to do on a write hit?
• Write-through

• update the word in cache block and 
corresponding word in memory

• Write-back
• update word in cache block
• allow memory word to be “stale”
=> add ‘dirty’ bit to each line indicating that 
memory be updated when block is replaced

=> OS flushes cache before I/O !!!

• Performance trade-offs?
• WT: read misses cannot result in writes
• WB: no writes of repeated writes


