CS61C : Machine Structures
Lecture #24: VM Il

\'\‘q’ " '
‘fi 0‘:"%’ ““"‘\' S 7 7 AN

2005-08-02

ﬂ Andy Carle
CS61CL24VMII (1) A Carle, Summer 2005 © UCB

Address Mapping: Page Table

Virtual Address:

VPN

Index
INto
page
table

Page Table

Vi AR.

Val éAccessé
-id i Rights :

]

‘ |

Physical
Memory
Address

Q Page Table located in physical memory

CS61C L24 VM Il (2)

A Carle, Summer 2005 © UCB

Page Table

* A page table: mapping function

 There are several different ways, all up to
the operating system, to keep this data
around.

e Each process running in the operating
system has its own page table

- Historically, OS changes page tables by
changing contents of Page Table Base
Register

ﬂ CS61C L24 VM (3) A Carle, Summer 2005 © UCB

Requirements revisited

e Remember the motivation for VM:

e Sharing memory with protection

 Different physical pages can be allocated
to different processes (sharing)

* A process can only touch pages in its
own page table (protection)

e Separate address spaces

e Since programs work only with virtual
addresses, different programs can have
different data/code at the same address!

ﬂ CS61C L24 VM (4) A Carle, Summer 2005 © UCB

Page Table Entry (PTE) Format

* Contains either Physical Page Number
or indication not in Main Memory

« OS maps to disk if Not Valid (V =0)
Page Table V A.R. 3 P.N. l\
ValiAccess:Physical

-id iRights iPage —P.T.E.

: :Number |‘/
Vi AR. iP.P.N.

o |f valid, also check if have permission
to use page: Access Rights (A.R.) may
nly, Read/Write, Executable

ﬂ CS61C L24VMII (5) A Carle, Summer 2005 © UCB

Paging/Virtual Memory Multiple Processes

User A:

Virtual Memory

fasay

CS 61C L24 VM Il (6)

0

A
Page
Table

Physical

Memory

User B:

Virtual Memory

o0

Page
Table (

Stack

wsUueo

A Carle, Summer 2005 © UCB

Comparing the 2 levels of hierarchy

Cache Version
Block or Line
Miss

Block Size: 32-64B

Placement:
Direct Mapped,

Virtual Memory vers.

Page

Page Fault

Page Size: 4K-8KB

Fully Associative

N-way Set Associative

Replacement:
LRU or Random

CS 61C L24 VM Il (7)

Least Recently Used
(LRU)

ﬂrite Thru or Back Write Back

A Carle, Summer 2005 © UCB

Notes on Page Table

e OS must reserve “Swap Space” on disk
for each process

To grow a process, ask Operating System
 If unused pages, OS uses them first
o If not, OS swaps some old pages to disk
* (Least Recently Used to pick pages to swap)

*Will add detalls, but Page Table is essence
of Virtual Memory

ﬂ CS61C L24 VM I (8) A Carle, Summer 2005 © UCB

VM Problems and Solutions

TLB
 Paged Page Tables

Q CS61C L24VMII (9) A Carle, Summer 2005 © UCB

Virtual Memory Problem #1

 Map every address = 1 indirection via
Page Table in memory per virtual
address = 1 virtual memory accesses =
2 physical memory accesses = SLOW!

* Observation: since locality in pages of
data, there must be locality in virtual
address translations of those pages

e Since small is fast, why not use a small
cache of virtual to physical address
translations to make translation fast?

* For historical reasons, cache is called a
ranslation Lookaside Buffer, or TLB

ﬂ CS 61C L24 VM Il (10) A Carle, Summer 2005 © UCB

Translation Look-Aside Buffers (TLBS)
*TLBs usually small, typically 32 - 256 entries

* Like any other cache, the TLB can be direct
mapped, set associative, or fully associative

VA PA miss
1 Main
Processor Cache
- — - Memory
NIt

y __data | |

<

On TLB miss, get page table entry from main memory

CS61CL24 VMl (12) A Carle, Summer 2005 © UCB

Typical TLB Format

Virtual
Address

Physical
Address

Dirty

Ref

Valid

AcCcess
Rights

« TLB just a cache on the page table mappings

« TLB access time comparable to cache
(much less than main memory access time)

e Dirty: since use write back, need to know whether

or not to write page to disk when replaced

*Ref: Used to help calculate LRU on replacement
e Cleared by OS periodically, then checked to

see if page was

CS 61C L24 VM II (12)

A Carle, Summer 2005 © UCB

What if notin TLB?

*Option 1: Hardware checks page table
_fil_rllcljg loads new Page Table Entry into

*Option 2: Hardware traps to OS, up to
OS to decide what to do

* MIPS follows Option 2: Hardware
knows nothing about page table

ﬂ CS61C L24 VM Il (13) A Carle, Summer 2005 © UCB

What if the data i1s on disk?

*We load the page off the disk into a
free block of memory, using a DMA
(Direct Memory Access — very fast!)
transfer

e Meantime we switch to some other
process waiting to be run

When the DMA Is complete, we get an
Interrupt and update the process's
page table

e SO0 when we switch back to the task, the
desired data will be iIn memory

ﬂ CS 61C L24 VM Il (14) A Carle, Summer 2005 © UCB

What if we don't have enough memory?

*We choose some other page |
belon%mg_to a program and transfer it
onto the disk if it is dirty

o If clean (disk copy Is up-to-date),
just overwrite that data in memory

* We chose the page to evict based on
replacement policy (e.g., LRU)

 And update that program's page table
to reflect the fact that its memory
moved somewhere else

e |[f continuously swap between disk and
ﬂmemory, called Thrashing

CS61C L24 VM I (15) A Carle, Summer 2005 © UCB

Question

Why Is the TLB so small yet so
effective?

 Because each entry corresponds to
pagesize # of addresses

*Why does the TLB typically have high
associativity? What is the |
“*associativity” of VA=PA mappings?

 Because the miss penalty dominates the
AMAT for VM.

* High associativity = lower miss rates.
ﬂ - VPN->PPN mappings are fully associative

CS 61C L24 VM Il (16) A Carle, Summer 2005 © UCB

Virtual Memory Problem #1 Recap

e Slow:

 Every memory access requires:
- 1l access to PT to get VPN->PPN translation
- 1l access to MEM to get data at PA

e Solution:

e Cache the Page Table

- Make common case fast
- PT cache called “TLB”

«“block size” is just 1 VPN->PN mapping
 TLB associativity

ﬂ CS61CL24 VM II (17) A Carle, Summer 2005 © UCB

Virtual Memory Problem #2

e Page Table too biqg!

* 4GB Virtual Memory + 1 KB page
= ~ 4 million Page Table Entries
— 16 MB just for Page Table for 1 process,
8 processes = 256 MB for Page Tables!

e Spatial Locality to the rescue
 Each page is 4 KB, lots of nearby references
e But large page size wastes resources

e Pages In program’s worki_n? set will
exhibit temporal and spatial locality.

eSO ...

ﬂ CS 61C L24 VM Il (18) A Carle, Summer 2005 © UCB

Solutions

 Page the Page Table itself!

e Works, but must be careful with never-
ending page faults

* Pin some PT pages to memory
«2-level page table

e Solutions tradeoff in-memory PT size
for slower TLB miss

« Make TLB large enough, highly associative
so rarely miss on address translation

« CS 162 will go over more options and Iin
greater depth

ﬂ CS61C L24 VM I (19) A Carle, Summer 2005 © UCB

Page Table Shrink :

e Single Page Table

‘ Page Number ‘Offset‘

20 bits 12 bits
 Multilevel Page Table

‘ Super Page No. ‘ Page Number ‘ Offset ‘
10 bits 10 bits 12 bits

*Only have second level page table for
valid entries of super level page table

 Book Exercises explore exact space

ﬂ savings
CS 61C L24 VM 1l (20) A Carle, Summer 2005 © UCB

Administrivia

* Proj 3 Due Friday
*Proj 4 Out Soon

«HW 8? Probably, but it will be short

ﬂ CS61C L24 VM I (21) A Carle, Summer 2005 © UCB

2-level Page Table

Virtual Memory

2nd Level Super o
Page Tables Page
=01 Table |
Physical / ﬁ 1
64 Memory | \
MB / = [Heap
\f Static
w CS 61C L24 VM Il (22) O

A Carle, Summer 2005 © UCB

Three Advantages of Virtual Memory

1) Translation:

 Program can be given consistent view of
memory, even though physical memory is
scrambled (illusion of contiguous memory)

* All programs starting at same set address

e lllusion of ~ infinite memory (232 or 2% bytes)
 Makes multiple processes reasonable

* Only the most important part of program
(“Working Set”) must be in physical memory

e Contiguous structures (like stacks) use only
as much physical memory as necessary yet
still grow later

ﬂ CS 61C L24 VM Il (23) A Carle, Summer 2005 © UCB

Cache, Proc and VM in IF (A Fine Slide)

Fetch PC <«
) EXE; PC € PC+4
tlb hit?
\A -
N j y —* VPN->PPN Map Cache hit? — Load into IR
Trap os 1 l

ot “\r']it,,?/vUpdate TLB n/\
n | y \ XXX

Cache full?

Free mem? Restart
y y
onil Pick victim :
Pick victim \‘
\ te policy?
Victim to disk , rite poliey?
\ wi
WB if dirt
Load new page y
\) o
Evict victim
Update PT
—
\‘ Load block

Update TLB

N Restart '
Q Restart
CS 61C L24 VM Il (24) A Carle, Summer 2005 © UCB

Cache, Proc and VM in IF (A Fine Slide)

Fetch PC <«
) EXE; PC € PC+4
tlb hit?
\A -
N j y —* VPN->PPN Map Cache hit? — Load into IR
Trap os 1 l

ot “\r']it,,?/vUpdate TLB n/\
n | y \ XXX

Free mem? : Restart y Cache full?
onil Pick victim :
Pick victim \
Victim\to disk wh Write policy? Where is the
\ ; i Wt
Load new page WB if dirty page fault?
\ —
Evict victim
Update PT — |
\‘ Load block

Update TLB

N Restart '
ﬂ Restart
CS 61C L24 VM Il (25) A Carle, Summer 2005 © UCB

$&VM Review: 4 Qs for any Mem. |

lerarchy

e Q1: Where can a block be placed in the upper

level?

« Q2: How Is a block found if it is In the upper

level?

e Q3: WhICh block should be replaced on a

MISS?

* Q4: What happens on a write?

ﬂ CS 61C L24 VM Il (26)

A Carle, Summer 2005 © UCB

Q1: Where block placed in upper level?

*Block 12 placed in 8 block cache:

e Fully associative, direct mapped, 2-way set
assoOciative

 S.A. Mapping = Block Number Mod Number Sets
Block 01234567

Block 51234567 o 01234567 Block

no. : no.

Fully associative: SetSetset Set

' Direct mapped: 0O 1 2 3
bIOCkhlz can go block 12 can go Set associative:
anywnere only into block 4 block 12 can go
(12 mod 8) anywhere in set 0
Block-frame address (12 mod 4)

Block 1111111111222222222233
N0 01234567890123456789012345678901

CS 61C L24 VM Il (27) A Carle, Summer 2005 © UCB

Q2: How Is a block found in upper level?

Block Address Block
Ta Index offset

Set Select

Data Select

*Direct indexing (using index and block
offset), tag compares, or combination

e Increasing associativity shrinks index,
expands tag

CS 61C L24 VM 1l (28) A Carle, Summer 2005 © UCB

Q3: Which block replaced on a miss?
eEasy for Direct Mapped

*Set Associative or Fully Associative:
« Random

 LRU (Least Recently Used)

Miss Rates
Associativity:2-way 4-way 3-way

Size LRU Ran LRU Ran LRU Ran
16 KB 52% 57% 4.7% 53% 4.4% 5.0%
64 KB 1.9% 2.0% 15% 1.7% 1.4% 1.5%
KB 1.15%1.17% 1.13% 1.13% 1.12% 1.12%

CS 61C L24 VM 11 (29)

A Carle, Summer 2005 © UCB

Q4: What to do on a write hit?

e Write-through

e update the word in cache block and
corresponding word in memory

o Write-back
e update word in cache block

e allow memory word to be “stale”

=> add ‘dirty’ bit to each line indicating that
memory be updated when block is replaced

=> OS flushes cache before |/O !l

e Performance trade-offs?
e WT: read misses cannot result in writes
Q-WB: no writes of repeated writes

CS 61C L24 VM 1l (30) A Carle, Summer 2005 © UCB

Peer Instruction (1/3)
* 40-bit virtual address, 16 KB page

Virtual Page Number (? bits) Page Offset (? bits)

e 36-bit physical address

Physical Page Number (? bits) Page Offset (? bits)

Number of bits in Virtual Page Number/ Page
offset, Physical Page Number/Page offset?

. 22/18 (VPN/PO), 22/14 (PPN/PO)
. 24/16, 20/16
. 26/14, 22/14
. 26/14, 26/10
. 28/12, 24/12

[]
Q CS61C L24 VM I (31) A Carle, Summer 2005 © UCB

g WDKK

Peer Instruction (1/3) Answer
*40- bit virtual address, 16 KB (2% B)

Virtual Page Number (26 bits) Page Offset (14 bits)

e 36- bit virtual address, 16 KB (214 B)

Physical Page Number (22 bits) | Page Offset (14 bits)

 Number of bits in Virtual Page Number/ Page
offset, Physical Page Number/Page offset?

1: 22/18 (VPN/PO), 22/14 (PPN/PO)
2: 24/16, 20/16

[3: 26/14 2214 |

4: 26/14, 26/10

5: 28/12, 24/12

Q CS61C L24 VM Il (32) A Carle, Summer 2005 © UCB

Peer Instruction (2/3): 40b VA, 36b PA
e 2-way set-assoc. TLB. 256 “s|ots”. 40b VA:
TLB Entgl: Valid bit, Dirty bit,
O

Access Control (say 2 bits),
Virtual Page Number, Physical Page Number

E Access (2 bits) | TLB Tag (? bits) |Physical Page No. (? bits)

e Number of bits In TLB Tag / Index / Entry?

1: 12/14 /38 (TLB Tag / Index / Entry)
2: 14/12 /40
3: 18/ 8/44
4: 18/ 8/58

ﬂ CS 61C L24 VM Il (33) A Carle, Summer 2005 © UCB

Peer Instruction (2/3) Answer

«2-way set-assoc data cache, 256 (28) “slots”,
2 TLB entries per slot => 8 bit index

TLB Tag (18 bits) | TLB Index (8 bits) [|Page Offset (14 bits)

Virtual Page Number (26 bits)

*TLB Entrg: Valid bit, Dirty bit,
Access Control (2 blts%, |
Virtual Page Number, Physical Page Number

E Access (2 bits) | TLB Tag (18 bits) | Physical Page No. (22 bits)

1: 12/14 /38 (TLB Tag / Index / Entry)
2: 14/12 /40
a: 187 8758

ﬂ CS 61C L24 VM Il (34) A Carle, Summer 2005 © UCB

Peer Instruction (3/3)
e 2-way set-assoc, 64KB data cache, 64B block

Cache Tag (? bits)| Cache Index (? bits) | Block Offset (? bits

Physical Page Address (36 bits)

e Data Cache Entry: Valid bit, Dirty bit, Cache
tag + ? bits of Data

E Cache Tag (? bits) Cache Data (? bits)

 Number of bits in Data cache Tag / Index /
Offset / Entry?

1: 12/ 9/14 /87 (Tag/Index/Offset/Entry)

2: 20/10/ 6/86
3: 20/10/ 6/534
4: 21/ 9/ 6/87

9/ 6/535

5: 21/
[]
ﬂ CS 61C L24 VM Il (35) A Carle, Summer 2005 © UCB

Peer Instruction (3/3) Answer

* 2-way set-assoc data cache, 64K/1K (219)
“slots”, 2 entries per slot => 9 bit index

Cache Tag (21 bits)fCache Index (9 bits) |Block Offset (6 bits)

Physical Page Address (36 bits)

e Data Cache Entry: Valid bit, Dlrty bit, Cache

tag + 64 Bytes of Data

1: 12/ 9/14 /87 (Tag/Index/Offset/Entry)

2: 20/10/ 6/86

3: 20/10/ 6/534
/| 9/ 6/5

: 7
5: 21 35 |
[]
CS 61C L24 VM 1l (36) A Carle, Summer 2005 © UCB

