
CS61C L25 I/O (1) A Carle, Summer 2005 © UCB

inst.eecs.berkeley.edu/~cs61c/su05
CS61C : Machine Structures

Lecture #25: I/O

2005-08-03

Andy Carle

CS61C L25 I/O (2) A Carle, Summer 2005 © UCB

Review
• Virtual memory to Physical Memory
Translation too slow?

• Add a cache of Virtual to Physical Address
Translations, called a TLB

• Spatial Locality means Working Set of
Pages is all that must be in memory for
process to run fairly well

• Virtual Memory allows protected
sharing of memory between processes
with less swapping to disk

CS61C L25 I/O (3) A Carle, Summer 2005 © UCB

Recall : 5 components of any Computer

Processor
(active)

Computer

Control
(“brain”)

Datapath
(“brawn”)

Memory
(passive)

(where
programs,
data live
when
running)

Devices
Input

Output

Keyboard,
Mouse

Display,
Printer

Disk,
Network

Earlier Lectures Current Lectures

CS61C L25 I/O (4) A Carle, Summer 2005 © UCB

Motivation for Input/Output

• I/O is how humans interact with
computers

• I/O gives computers long-term memory.
• I/O lets computers do amazing things:

• Read pressure of synthetic hand and control
synthetic arm and hand of fireman

• Control propellers, fins, communicate
in BOB (Breathable Observable Bubble)

• Computer without I/O like a car without
wheels; great technology, but won’t get
you anywhere

CS61C L25 I/O (5) A Carle, Summer 2005 © UCB

I/O Device Examples and Speeds
• I/O Speed: bytes transferred per second

(from mouse to Gigabit LAN: 10-million-to-1)
• Device Behavior Partner Data Rate

(KBytes/s)
Keyboard Input Human 0.01
Mouse Input Human 0.02
Voice output Output Human 5.00
Floppy disk Storage Machine 50.00
Laser Printer Output Human 100.00
Magnetic Disk Storage Machine 10,000.00
Wireless Network I or O Machine 10,000.00
Graphics Display Output Human 30,000.00
Wired LAN Network I or O Machine 125,000.00

When discussing transfer rates, use 10x

CS61C L25 I/O (6) A Carle, Summer 2005 © UCB

What do we need to make I/O work?

• A way to present them
to user programs so
they are useful

cmd reg.
data reg.

Operating System
APIsFiles

Proc Mem

• A way to connect many
types of devices to the
Proc-Mem

PCI Bus

SCSI Bus

• A way to control these
devices, respond to
them, and transfer data

CS61C L25 I/O (7) A Carle, Summer 2005 © UCB

Instruction Set Architecture for I/O

• What must the processor do for I/O?
• Input: reads a sequence of bytes
• Output: writes a sequence of bytes

• Some processors have special input and
output instructions

• Alternative model (used by MIPS):
• Use loads for input, stores for output
• Called “Memory Mapped Input/Output”
• A portion of the address space dedicated to
communication paths to Input or Output
devices (no memory there)

CS61C L25 I/O (8) A Carle, Summer 2005 © UCB

Memory Mapped I/O

• Certain addresses are not regular
memory

• Instead, they correspond to registers
in I/O devices

cntrl reg.
data reg.

0

0xFFFFFFFF

0xFFFF0000

address

CS61C L25 I/O (9) A Carle, Summer 2005 © UCB

Processor-I/O Speed Mismatch

• 1GHz microprocessor can execute 1
billion load or store instructions per
second, or 4,000,000 KB/s data rate

• I/O devices data rates range from 0.01
KB/s to 125,000 KB/s

• Input: device may not be ready to send
data as fast as the processor loads it

• Also, might be waiting for human to act

• Output: device not be ready to accept
data as fast as processor stores it

• What to do?

CS61C L25 I/O (10) A Carle, Summer 2005 © UCB

Processor Checks Status before Acting
• Path to device generally has 2 registers:

• Control Register, says it’s OK to read/write
(I/O ready) [think of a flagman on a road]

• Data Register, contains data

• Processor reads from Control Register
in loop, waiting for device to set Ready
bit in Control reg (0 ⇒ 1) to say its OK

• Processor then loads from (input) or
writes to (output) data register

• Load from or Store into Data Register
resets Ready bit (1 ⇒ 0) of Control
Register

CS61C L25 I/O (11) A Carle, Summer 2005 © UCB

SPIM I/O Simulation
• SPIM simulates 1 I/O device: memory-
mapped terminal (keyboard + display)
• Read from keyboard (receiver); 2 device regs
• Writes to terminal (transmitter); 2 device regs

Received
Byte

Receiver Data
0xffff0004 Unused (00...00)

(IE)Receiver Control
0xffff0000

R
eady

(I.E.)Unused (00...00)

Transmitted
Byte

Transmitter Control
0xffff0008

Transmitter Data
0xffff000c

R
eady

(I.E.)Unused (00...00)

Unused

CS61C L25 I/O (12) A Carle, Summer 2005 © UCB

SPIM I/O
• Control register rightmost bit (0): Ready

• Receiver: Ready==1 means character in Data
Register not yet been read;
1 ⇒ 0 when data is read from Data Reg

• Transmitter: Ready==1 means transmitter is
ready to accept a new character;
0 ⇒ Transmitter still busy writing last char

- I.E. bit discussed later

• Data register rightmost byte has data
• Receiver: last char from keyboard; rest = 0
• Transmitter: when write rightmost byte,
writes char to display

CS61C L25 I/O (13) A Carle, Summer 2005 © UCB

I/O Example
• Input: Read from keyboard into $v0

lui $t0, 0xffff #ffff0000
Waitloop: lw $t1, 0($t0) #control

andi $t1,$t1,0x1
beq $t1,$zero, Waitloop
lw $v0, 4($t0) #data

• Output: Write to display from $a0
lui $t0, 0xffff #ffff0000

Waitloop: lw $t1, 8($t0) #control
andi $t1,$t1,0x1
beq $t1,$zero, Waitloop
sw $a0, 12($t0) #data

• Processor waiting for I/O called “Polling”
• “Ready” bit from processor’s point of view!

CS61C L25 I/O (14) A Carle, Summer 2005 © UCB

Administrivia

• Project 3 Due Friday
• Project 4 Out Soon

• Final Exam will be Next Friday!

CS61C L25 I/O (15) A Carle, Summer 2005 © UCB

Cost of Polling?
• Assume for a processor with a 1GHz
clock it takes 400 clock cycles for a
polling operation (call polling routine,
accessing the device, and returning).
Determine % of processor time for polling

• Mouse: polled 30 times/sec so as not to miss
user movement

• Floppy disk: transfers data in 2-Byte units
and has a data rate of 50 KB/second.
No data transfer can be missed.

• Hard disk: transfers data in 16-Byte chunks
and can transfer at 16 MB/second. Again, no
transfer can be missed.

CS61C L25 I/O (16) A Carle, Summer 2005 © UCB

% Processor time to poll [p. 677 in book]
Mouse Polling, Clocks/sec

= 30 [polls/s] * 400 [clocks/poll] = 12K [clocks/s]

• % Processor for polling:
12*103 [clocks/s] / 1*109 [clocks/s] = 0.0012%
⇒ Polling mouse little impact on processor

Frequency of Polling Floppy
= 50 [KB/s] / 2 [B/poll] = 25K [polls/s]

• Floppy Polling, Clocks/sec
= 25K [polls/s] * 400 [clocks/poll] = 10M [clocks/s]

• % Processor for polling:
10*106 [clocks/s] / 1*109 [clocks/s] = 1%
⇒ OK if not too many I/O devices

CS61C L25 I/O (17) A Carle, Summer 2005 © UCB

% Processor time to poll hard disk

Frequency of Polling Disk
= 16 [MB/s] / 16 [B] = 1M [polls/s]

• Disk Polling, Clocks/sec
= 1M [polls/s] * 400 [clocks/poll]
= 400M [clocks/s]

• % Processor for polling:
400*106 [clocks/s] / 1*109 [clocks/s] = 40%
⇒ Unacceptable

CS61C L25 I/O (18) A Carle, Summer 2005 © UCB

What is the alternative to polling?

• Wasteful to have processor spend
most of its time “spin-waiting” for I/O
to be ready

• Would like an unplanned procedure
call that would be invoked only when
I/O device is ready

• Solution: use exception mechanism to
help I/O. Interrupt program when I/O
ready, return when done with data
transfer

CS61C L25 I/O (19) A Carle, Summer 2005 © UCB

I/O Interrupt

• An I/O interrupt is like overflow
exceptions except:

• An I/O interrupt is “asynchronous”
• More information needs to be conveyed

• An I/O interrupt is asynchronous with
respect to instruction execution:

• I/O interrupt is not associated with any
instruction, but it can happen in the middle
of any given instruction

• I/O interrupt does not prevent any
instruction from completion

CS61C L25 I/O (20) A Carle, Summer 2005 © UCB

Definitions for Clarification

• Exception: signal marking that
something “out of the ordinary” has
happened and needs to be handled

• Interrupt: asynchronous exception
• Trap: synchronous exception
• Note: Many systems folks say
“interrupt” to mean what we mean
when we say “exception”.

CS61C L25 I/O (21) A Carle, Summer 2005 © UCB

Interrupt Driven Data Transfer

(1) I/O
interrupt

(2) save PC

Memory

add
sub
and
or

user
program

read
store
...
jr

interrupt
service
routine

(3) jump to
interrupt
service
routine
(4)
perform
transfer

(5)

CS61C L25 I/O (22) A Carle, Summer 2005 © UCB

SPIM I/O Simulation: Interrupt Driven I/O
• I.E. stands for Interrupt Enable
• Set Interrupt Enable bit to 1 have interrupt
occur whenever Ready bit is set

Received
Byte

Receiver Data
0xffff0004 Unused (00...00)

(IE)Receiver Control
0xffff0000

R
eady

(I.E.)Unused (00...00)

Transmitted
Byte

Transmitter Control
0xffff0008

Transmitter Data
0xffff000c

R
eady

(I.E.)Unused (00...00)

Unused

CS61C L25 I/O (23) A Carle, Summer 2005 © UCB

Benefit of Interrupt-Driven I/O
• Find the % of processor consumed if the
hard disk is only active 5% of the time.
Assuming 500 clock cycle overhead for
each transfer, including interrupt:

• Disk Interrupts/s = 16 MB/s / 16B/interrupt
= 1M interrupts/s

• Disk Interrupts, clocks/s
= 1M interrupts/s * 500 clocks/interrupt
= 500,000,000 clocks/s

• % Processor for during transfer:
500*106 / 1*109 = 50%

• Disk active 5% ⇒ 5% * 50% ⇒ 2.5% busy

CS61C L25 I/O (24) A Carle, Summer 2005 © UCB

Generalizing Interrupts

• We can handle all sorts of exceptions
with interrupts.

• Big idea: jump to handler that knows
what to do with each interrupt, then
jump back

• Our types: syscall, overflow, mmio
ready.

CS61C L25 I/O (25) A Carle, Summer 2005 © UCB

OS: I/O Requirements
• The OS must be able to prevent:

• The user program from communicating with
the I/O device directly

• If user programs could perform I/O directly:
• No protection to the shared I/O resources

• 3 types of communication are required:
• The OS must be able to give commands to the
I/O devices

• The I/O device notify OS when the I/O device
has completed an operation or an error

• Data transfers between memory and I/O device

CS61C L25 I/O (26) A Carle, Summer 2005 © UCB

Instruction Set Support for OS (1/2)

• How to turn off interrupts during
interrupt routine?

• Bit in Status Register determines
whether or not interrupts enabled:
Interrupt Enable bit (IE) (0 ⇒ off, 1 ⇒ on)

Status Register(described later) IE

CS61C L25 I/O (27) A Carle, Summer 2005 © UCB

Instruction Set Support for OS (2/2)
• How to prevent user program from
turning off interrupts (forever)?
• Bit in Status Register determines whether in
user mode or OS (kernel) mode:
Kernel/User bit (KU) (0 ⇒ kernel, 1 ⇒ user)

Status RegisterAssume Unused IEKU

• On exception/interrupt disable interrupts
(IE=0) and go into kernel mode (KU=0)

CS61C L25 I/O (28) A Carle, Summer 2005 © UCB

Kernel/User Mode

• Generally restrict device access to OS
• HOW?
• Add a “mode bit” to the machine: K/U
• Only allow SW in “kernel mode” to
access device registers

• If user programs could access device
directly?

• could destroy each others data, ...
• might break the devices, …

CS61C L25 I/O (29) A Carle, Summer 2005 © UCB

Crossing the System Boundary

• System loads user program into
memory and ‘gives’ it use of the
processor

• Switch back
• SYSCALL

- request service
- I/O

• TRAP (overflow)
• Interrupt

Proc Mem

I/O Bus

cmd reg.
data reg.

System

User

CS61C L25 I/O (30) A Carle, Summer 2005 © UCB

Syscall

• How does user invoke the OS?
•syscall instruction: invoke the kernel
(Go to 0x80000080, change to kernel
mode)

• By software convention, $v0 has system
service requested: OS performs request

CS61C L25 I/O (31) A Carle, Summer 2005 © UCB

SPIM OS Services via Syscall

• Note: most OS services deal with I/O

print_int 1 $a0 = integer
print_float 2 $f12 = float
print_double 3 $f12 = double
print_string 4 $a0 = string
read_int 5 integer (in $v0)
read_float 6 float (in $f0)
read_double 7 double (in $f0)
read_string 8 $a0 = buffer,

$a1 = length
sbrk 9 $a0 = amount address(in $v0)
exit 10

Service Code Args Result
(put in $v0)

CS61C L25 I/O (32) A Carle, Summer 2005 © UCB

Example: User invokes OS (SPIM)

• Print “the answer = 42”
• First print “the answer =”:
.data
str: .asciiz "the answer = "
.text
li $v0,4 # 4=code for print_str
la $a0,str # address of string
syscall # print the string

• Now print 42
li $v0,1 # 1=code for print_int
li $a0,42 # integer to print
syscall # print int

CS61C L25 I/O (33) A Carle, Summer 2005 © UCB

Handling a Single Interrupt (1/3)

• An interrupt has occurred, then what?
• Automatically, the hardware copies PC
into EPC ($14 on cop0) and puts correct
code into Cause Reg ($13 on cop0)

• Automatically, PC is set to 0x80000080,
process enters kernel mode, and
interrupt handler code begins execution

• Interrupt Handler code: Checks Cause
Register (bits 5 to 2 of $13 in cop0) and
jumps to portion of interrupt handler
which handles the current exception

CS61C L25 I/O (34) A Carle, Summer 2005 © UCB

Handling a Single Interrupt (2/3)

• Sample Interrupt Handler Code
.text 0x80000080

mfc0 $k0,$13 # $13 is Cause Reg

sll $k0,$k0,26 # isolate

srl $k0,$k0,28 # Cause bits

• Notes:
• Don’t need to save $k0 or $k1

- MIPS software convention to provide temp
registers for operating system routines

- Application software cannot use them
• Can only work on CPU, not on cop0

CS61C L25 I/O (35) A Carle, Summer 2005 © UCB

Handling a Single Interrupt (3/3)

• When the interrupt is handled, copy the
value from EPC to the PC.

• Call instruction rfe (return from
exception), which will return process to
user mode and reset state to the way it
was before the interrupt

• What about multiple interrupts?

CS61C L25 I/O (36) A Carle, Summer 2005 © UCB

Multiple Interrupts

• Problem: What if we’re handling an
Overflow interrupt and an I/O interrupt
(printer ready, for example) comes in?

• Options:
• drop any conflicting interrupts:
unrealistic, they may be important

• simultaneously handle multiple interrupts:
unrealistic, may not be able to synchronize
them (such as with multiple I/O interrupts)

• queue them for later handling: sounds
good

CS61C L25 I/O (37) A Carle, Summer 2005 © UCB

Prioritized Interrupts (1/3)

• Question: Suppose we’re dealing with
a computer running a nuclear facility.
What if we’re handling an Overflow
interrupt and a Nuclear Meltdown
Imminent interrupt comes in?

• Answer: We need to categorize and
prioritize interrupts so we can handle
them in order of urgency: emergency
vs. luxury.

CS61C L25 I/O (38) A Carle, Summer 2005 © UCB

Prioritized Interrupts (2/3)

• OS convention to simplify software:
• Process cannot be preempted by
interrupt at same or lower "level"

• Return to interrupted code as soon as no
more interrupts at a higher level

• When an interrupt is handled, take the
highest priority interrupt on the queue

- may be partially handled, may not, so we
may need to save state of interrupts(!)

CS61C L25 I/O (39) A Carle, Summer 2005 © UCB

Prioritized Interrupts (3/3)

• To implement, we need an Exception
Stack:

• portion of address space allocated for
stack of “Exception Frames”

• each frame represents one interrupt:
contains priority level as well as enough
info to restart handling it if necessary

CS61C L25 I/O (40) A Carle, Summer 2005 © UCB

Modified Interrupt Handler (1/3)

• Problem: When an interrupt comes in,
EPC and Cause get overwritten
immediately by hardware. Lost EPC
means loss of user program.

• Solution: Modify interrupt handler.
When first interrupt comes in:

• disable interrupts (in Status Register)
• save EPC, Cause, Status and Priority
Level on Exception Stack

• re-enable interrupts
• continue handling current interrupt

CS61C L25 I/O (41) A Carle, Summer 2005 © UCB

Modified Interrupt Handler (2/3)

• When next (or any later) interrupt comes
in:

• interrupt the first one
• disable interrupts (in Status Register)
• save EPC, Cause, Status and Priority Level
(and maybe more) on Exception Stack

• determine whether new one preempts old
one

- if no, re-enable interrupts and continue with
old one

- if yes, may have to save state for the old one,
then re-enable interrupts, then handle new one

CS61C L25 I/O (42) A Carle, Summer 2005 © UCB

Modified Interrupt Handler (3/3)

• Notes:
• Disabling interrupts is dangerous
• So we disable them for as short a time as
possible: long enough to save vital info
onto Exception Stack

• This new scheme allows us to handle
many interrupts effectively.

CS61C L25 I/O (43) A Carle, Summer 2005 © UCB

Interrupt Levels in MIPS?

• What are they?

• It depends what the MIPS chip is
inside of: differ by app Casio PalmPC,
Sony Playstation, HP LaserJet printer

• MIPS architecture enables priorities
for different I/O events

CS61C L25 I/O (44) A Carle, Summer 2005 © UCB

Interrupt Levels in MIPS Architecture

• Conventionally, from highest level to
lowest level exception/interrupt levels:

• Bus error
• Illegal Instruction/Address trap
• High priority I/O Interrupt (fast response)
• Low priority I/O Interrupt (slow response)
• Others

CS61C L25 I/O (45) A Carle, Summer 2005 © UCB

Improving Data Transfer Performance

• Thus far: OS give commands to I/O,
I/O device notify OS when the I/O device
completed operation or an error

• What about data transfer to I/O device?
• Processor busy doing loads/stores
between memory and I/O Data Register

• Ideal: specify the block of memory to be
transferred, be notified on completion?

• Direct Memory Access (DMA) : a simple
computer transfers a block of data to/from
memory and I/O, interrupting upon done

CS61C L25 I/O (46) A Carle, Summer 2005 © UCB

Example: code in DMA controller
• DMA code from Disk Device to Memory

.data
Count: .word 4096
Start: .space 4096

• DMA “computer” in parallel with CPU

.text
Initial: lw $s0, Count # No. chars

la $s1, Start # @next char
Wait: lw $s2, DiskControl

andi $s2,$s2,1 # select Ready
beq $s2,$0,Wait # spinwait
lb $t0, DiskData # get byte
sb $t0, 0($s1) # transfer
addiu $s0,$s0,-1 # Count--
addiu $s1,$s1,1 # Start++
bne $s0,$0,Wait # next char

CS61C L25 I/O (47) A Carle, Summer 2005 © UCB

Details not covered

• MIPS has a field to record all pending
interrupts so that none are lost while
interrupts are off; in Cause register

• The Interrupt Priority Level that the
CPU is running at is set in memory

• MIPS has a field in that can mask
interrupts of different priorities to
implement priority levels; in Status
register

• MIPS has limited nesting of saving
KU,IE bits to recall in case higher
priority interrupts; in Status Register

CS61C L25 I/O (48) A Carle, Summer 2005 © UCB

Implementation?

• Take 150 & 152

CS61C L25 I/O (49) A Carle, Summer 2005 © UCB

Peer Instruction

A. A faster CPU will result in faster I/O.

B. Hardware designers handle mouse input
with interrupts since it is better than
polling in almost all cases.

C. Low-level I/O is actually quite simple, as
it’s really only reading and writing bytes.

CS61C L25 I/O (50) A Carle, Summer 2005 © UCB

“And in conclusion…”
• I/O gives computers their 5 senses
• I/O speed range is 100-million to one
• Processor speed means must
synchronize with I/O devices before use

• Polling works, but expensive
• processor repeatedly queries devices

• Interrupts works, more complex
• devices causes an exception, causing
OS to run and deal with the device

• I/O control leads to Operating Systems

