inst.eecs.berkeley.edu/~cs61c/su05

CS61C : Machine Structures
Lectur #25: 1/0

2005-08-03

ﬂ Andy Carle
CS61C L251/0 (1) A Carle, Summer 2005 © UCB

Review

*Virtual memory to Physical Memory
Translation too slow?

 Add a cache of Virtual to Physical Address
Translations, called a TLB

e Spatial Locality means Working Set of
Pages Is all that must be in memory for
process to run fairly well

*Virtual Memory allows protected
sharing of memory between processes
with less swapping to disk

ﬂ CS61C L251/0 (2) A Carle, Summer 2005 © UCB

Recall : 5 components of any Computer

Earlier Lectures Current Lectures

s TEEEEEEE '~ “ ______________ n,

Computer . | Keyboard,
Mouse

-y
~
-

Processor Memory

I |
| |
| |
| (passive) |
|| Control | Disk l
Il (("brain”) J| |(where Network 1
| programs, ctworke
| (Datapath) |datalive :
| (“brawn™)| |wheh Display, |

I
runnjng) I

Printer .
V4

CS61C L251/0 (3) A Carle, Summer 2005 © UCB

Motivation for Input/Output

e|/O I1s how humans interact with
computers

/O gives computers long-term memory.

*|/O lets computers do amazing things:

 Read pressure of synthetic hand and control
synthetic arm and hand of fireman

4 e Control propellers, fins, communicate
In BOB (Breathable Observable Bubble)

« Computer without I/O like a car without
wheels; great technology, but won’t get

Qyou anywhere
CS61C L251/0 (4) A Carle, Summer 2005 © UCB

/O Device Examples and Speeds

/O Speed: bytes transferred per second
(from mouse to Gigabit LAN: 10-million-to-1)

e Device

Keyboard
Mouse

Voice output
Floppy disk

Laser Printer
Magnetic Disk
Wireless Network
Graphics Display
Wired LAN Network

74

Behavior

Input
Input
Output
Storage
Output
Storage
| or O
Output
|l or O

Parther

Human
Human
Human
Machine
Human
Machine
Machine
Human
Machine

Data Rate
(KBytes/s)

0.01

0.02

5.00

50.00
100.00
10,000.00
10,000.00
30,000.00
125,000.00

When discussing transfer rates, use 10*

CS61C L251/0 (5)

A Carle, Summer 2005 © UCB

What do we need to make I/O work?

A way to connect many
types of devices to the Files APIs

Proc-Mem Operating System

* A way to control these
devices, respond to Mem
them, and transfer data

« A way to present them< S >
to user programs so
they are useful <| SCISI Bus| >

cmd reqg.

ﬂ data reg.
CS61C L25 1/O (6) A Carle, Summer 2005 © UCB

Instruction Set Architecture for I/O

 What must the processor do for 1/O?

e Input: reads a sequence of bytes
e OQutput: writes a sequence of bytes

e Some processors have special input and
output instructions

e Alternative model (used by MIPS):
e Use loads for input, stores for output
e Called “Memory Mapped Input/Output”

* A portion of the address space dedicated to
communication paths to Input or Output
devices (no memory there)

ﬂ CS61C L251/0 (7) A Carle, Summer 2005 © UCB

Memory Mapped I/O

e Certain addresses are not regular

memory

*Instead, they correspond to registers
In I/O devices

OXFFFFFFFF

OxFFFFO000

74

address

0

CS61C L25 1/0 (8)

R
_—
e
-

~
~
~~
~
~
~
-~

cntrl reg.

data reg.

A Carle, Summer 2005 © UCB

Processor-I/O Speed Mismatch

* 1GHz microprocessor can execute 1
billion load or store instructions per
second, or 4,000,000 KB/s data rate

/O devices data rates range from 0.01
KB/s to 125,000 KB/s

*Input: device may not be read?/ to send
data as fast as the processor [oads it

* Also, might be waiting for human to act

e Output: device not be ready to accept
data as fast as processor stores it

e \What to do?

ﬂ CS61C L251/0 (9) A Carle, Summer 2005 © UCB

Processor Checks Status before Acting

e Path to device generally has 2 reqgisters:

* Control Reqister, says it's OK to read/write
(I/0O ready) [think of a flagman on a road]

e Data Reqgister, contains data

* Processor reads from Control Register
In loop, waiting for device to set Ready
bit in Control reg (0 = 1) to say its OK

* Processor then loads from (input) or
writes to (output) data register

e Load from or Store into Data Register
resets Ready bit (1 = 0) of Control

ﬂ Register
CS61C L25 I/0 (10) A Carle, Summer 2005 © UCB

SPIM I/O Simulation

* SPIM simulates 1 I/O device: memory-
mapped terminal (keyboard + display)

 Read from keyboard (receiver); 2 device regs
* Writes to terminal (transmitter); 2 device regs

Receiver Control
OxFFFFO000

Receiver Data
OxFFFFO004

Transmitter Control
OxTFFFF0008
Transmitter Data
OxFFFF000cC

ﬂ CS61C L25 1/O (11)

Unused (00...00)

31
Apeay

Recelved

Unused (00...00) Bvte

Unused (00...00)

31
Apeay

Transmitted

Unused Byte

A Carle, Summer 2005 © UCB

SPIM 1I/O
e Control register rightmost bit (0): Ready

* Recelver: Ready==1 means character in Data
Register not yet been read,
1 = Owhen datais read from Data Reg

 Transmitter: Ready==1 means transmitter is
ready to accept a new character;
0 = Transmitter still busy writing last char

- |.E. bit discussed later

e Data register rightmost byte has data
* Receiver: last char from keyboard; rest =0

 Transmitter: when write rightmost byte,
writes char to display

ﬂ CS61C L251/0 (12) A Carle, Summer 2005 © UCB

/O Example
* Input: Read from keyboard into $vO

lui $t0, OxFFff
Waitloop: Iw $t1, 0($t0)

andi $t1,%$tl1,0x1

beq $tl,%zero, Wairtlhoop

Iw $v0, 4($t0)

e OQutput: Write to display from $a0

lui $t0, OxFFff
Waitloop: Iw $t1, 8(%$t0)

andi $t1,%$t1,0x1

beq $tl,%zero, Wairtlhoop

sw $a0, 12($t0)

e Processor waiting for 1/O called “Polling”
Z- “Ready” bit from processor’s point of view!

CS61C L25 1/0 (13) A Carle, Summer 2005 © UCB

Administrivia

* Project 3 Due Friday
* Project 4 Out Soon

* Final Exam will be Next Friday!

ﬂ CS61C L25 1/0 (14) A Carle, Summer 2005 © UCB

Cost of Polling?

 Assume for a processor with a 1GHz
clock it takes 400 clock cycles for a
polling operation (call polling routine,
accessing the device, and returning).
Determine % of processor time for polling

 Mouse: polled 30 times/sec so as not to miss
user movement

* Floppy disk: transfers data in 2-Byte units
and has a data rate of 50 KB/second.
No data transfer can be missed.

e Hard disk: transfers data in 16-Byte chunks

and can transfer at 16 MB/second. Again, no
transfer can be missed.

ﬂ CS61C L25 1/O (15)

A Carle, Summer 2005 © UCB

% Processor time to poll [p. 677 in book]

Mouse Polling, Clocks/sec
= 30 [polls/s] * 400 [clocks/poll] = 12K [clocks/s]

* % Processor for polling:
12*103[clocks/s] / 1*10° [clocks/s] = 0.0012%

= Polling mouse little impact on processor

Frequency of Polling Floppy
=50 [KB/s] / 2 [B/poll] = 25K [polls/s]

* Floppy Polling, Clocks/sec
= 25K [polls/s] * 400 [clocks/poll] = 10M [clocks/s]

* % Processor for polling:
10*10%[clocks/s] / 1*10° [clocks/s] = 1%

— OK if not too many 1I/O devices

CS61C L25 I/0 (16) A Carle, Summer 2005 © UCB

% Processor time to poll hard disk

Frequency of Polling Disk
= 16 [MB/s] / 16 [B] = 1M [polls/s]

* Disk Polling, Clocks/sec
= 1M [polls/s] * 400 [clocks/poll]
= 400M [clocks/s]

*% Processor for polling:
400*10° [clocks/s] / 1*10° [clocks/s] = 40%

= Unacceptable

Q CS61C L251/0 (17) A Carle, Summer 2005 © UCB

What is the alternative to polling?

* Wasteful to have processor spend
most of its time “spin-waiting” for I/O
to be ready

*Would like an unplanned procedure
call that would be invoked only when
/O device iIs ready

e Solution: use exception mechanism to
help I/O. Interrupt program when 1/O
ready, return when done with data
transfer

ﬂ CS61C L25 1/0 (18) A Carle, Summer 2005 © UCB

/O Interrupt
* An I/O Interrupt is like overflow
exceptions except:
 An I/O Iinterrupt is “asynchronous”
 More information needs to be conveyed
* An I/O Iinterrupt Is asynchronous with
respect to instruction execution:

/O Interrupt is not associated with any
Instruction, but it can happen in the middle
of any given instruction

/O Interrupt does not prevent any
Instruction from completion

ﬂ CS61C L25 1/0 (19) A Carle, Summer 2005 © UCB

Definitions for Clarification

* Exception: signal marking that
something “out of the ordinary” has
happened and needs to be handled

e Interrupt: asynchronous exception
* Trap: synchronous exception

*Note: Many systems folks say
“Interrupt” to mean what we mean
when we say “exception”.

ﬂ CS61C L25 I/0 (20) A Carle, Summer 2005 © UCB

Interrupt Driven Data Transfer

74

Memory
(1) 1/0 ;‘iﬂ
Interrupt sub user
M and program
(2) save PC| ™.or |/
(3) jump to
interrupt
service ~
routine (9) a0 interrupt
(4) store | service
oerform Jr Y routine
transfer

CS61C L25 1/0 (21)

A Carle, Summer 2005 © UCB

SPIM I/O Simulation: Interrupt Driven |/O
o |.E. stands for Interrupt Enable

» Set Interrupt Enable bit to 1 have interrupt
occur whenever Ready bit Is set

Receiver Control =7
m
OxFFFF0000 Unused (00...00) U é’
Receiver Data Received
oxFFFF0004| Unused (00...00) Bvte
~|2
Transmitter Control 713
OxFEFFO008 Unused (00...00) Zlg
Transmitter Data Transmitted
oxFFFFoooc| Unused Byte

ﬂ CS61C L25 1/0 (22) A Carle, Summer 2005 © UCB

Benefit of Interrupt-Driven I/O

FINO

harc

the % of processor consumed If the
disk is only active 5% of the time.

Assuming 500 clock cycle overhead for
each transfer, including interrupt:

e Disk Interrupts/s = 16 MB/s / 16B/interrupt

= 1M interrupts/s

e Disk Interrupts, clocks/s
= 1M interrupts/s * 500 clocks/interrupt
= 500,000,000 clocks/s

* % Processor for during transfer:
500*%10°/ 1*10° = 50%

e Disk active 5% = 5% * 50% = 2.5% busy

ﬂ CS61C L25 I/0 (23) A Carle, Summer 2005 © UCB

Generalizing Interrupts

We can handle all sorts of exceptions
with interrupts.

*Big idea: jJump to handler that knows
what to do with each interrupt, then
jump back

e Our types: syscall, overflow, mmio
ready.

ﬂ CS61C L25 I/0 (24) A Carle, Summer 2005 © UCB

OS: I/O Requirements

e The OS must be able to prevent:

 The user program from communicating with
the I/O device directly

o If user programs could perform /O directly:
* No protection to the shared I/O resources

e 3 types of communication are required:

* The OS must be able to give commands to the
/O devices

* The I/O device notify OS when the I/O device
has completed an operation or an error

Q Data transfers between memory and I/O device

CS61C L25 I/0 (25) A Carle, Summer 2005 © UCB

Instruction Set Support for OS (1/2)

e How to turn off interrupts during

Interrupt routine?

*Bit In Status Register determines
whether or not interrupts enabled:
Interrupt Enable bit (IE) (0 = off, 1 = on)

(described later)

IE

Q CS61C L25 1/O (26)

Status Register

A Carle, Summer 2005 © UCB

Instruction Set Support for OS (2/2)

 How to prevent user program from
turning off interrupts (forever)?

* Bit in Status Register determines whether in
user mode or OS (kernel) mode:
Kernel/User bit (KU) (0 = kernel, 1 = user)

Assume Unused

KU

Status Register

* On exception/interrupt disable interrupts
(IE=0) and go into kernel mode (KU=0)

ﬂ CS61C L25 1/0 (27)

A Carle, Summer 2005 © UCB

Kernel/User Mode

e Generally restrict device access to OS
e HOW?

 Add a “mode bit” to the machine: K/U

*Only allow SW in “kernel mode” to
access device registers

e|f user programs could access device
directly?

ecould destroy each others data, ...
*might break the devices, ...

ﬂ CS61C L25 I/0 (28) A Carle, Summer 2005 © UCB

Crossing the System Boundary

e System loads user
memory and ‘gives

processor

e Switch back

e SYSCALL

- request service
- 1/0

* TRAP (overflow)
e Interrupt

ﬂ CS61C L25 1/O (29)

P.

User

C

Syste

rogram into
It use of the

data reg.

A Carle, Summer 2005 © UCB

Syscall

e How does user invoke the OS?

esyscall instruction: invoke the kernel

(Go to 0x80000080, change to kernel
mode)

* By software convention, $v0 has system
service requested: OS performs request

ﬂ CS61C L25 I/0 (30) A Carle, Summer 2005 © UCB

SPIM OS Services via Syscall

Service Code Args Result
(put in $v0O)

print_int 1 | $a0 = integer
print_float |2 | $f12 = float
print_double 3 |$f12 = double
print_string (4 | $a0 =string

read_int 5 integer (in $vO0)
read float |6 float (in $T0)
read_double|7 double (in $F0)
read_string |8 | $a0 = buffer,

b _L . $al=length ,________ ____
sbrk 9 '$a0 = amount address(in $vO)
exit 10

QNote: most OS services deal with I/O

CS61C L251/0 (31) A Carle, Summer 2005 © UCB

Example: User invokes OS (SPIM)

Print “the answer = 42"

e First print “the answer ="

.data -

str: .asciiz ''the answer = "
_text

I1 $v0,4 # 4=code for print_str
la $a0,str # address of string
syscall # print the string

 Now print 42

1 $vO0,1 # l=code for print_int
I1 $a0,42 # i1nteger to print
syscall # print Int

Q CS61C L25 1/0 (32) A Carle, Summer 2005 © UCB

Handling a Single Interrupt (1/3)

 An interrupt has occurred, then what?

 Automatically, the hardware copies PC
into EPC ($14 on copO0) and puts correct
code into Cause Reg ($13 on copO)

 Automatically, PC is set to 0x80000080,
process enters kernel mode, and
Interrupt handler code begins execution

 Interrupt Handler code: Checks Cause
Register (bits 5to 2 of $13 in cop0) and
jumps to portion of interrupt handler
which handles the current exception

ﬂ CS61C L25 1/0 (33) A Carle, Summer 2005 © UCB

Handling a Single Interrupt (2/3)

« Sample Interrupt Handler Code
.text 0x80000080
mfcO $k0,$13 # $13 is Cause Reg
sl $k0,$k0,26 # 1solate
sri $k0,$k0,28 # Cause bits

e Notes:

e Don’t need to save $kO or $k1

- MIPS software convention to provide temp
registers for operating system routines

- Application software cannot use them
ﬂ e Can only work on CPU, not on copO

CS61C L25 1/0 (34) A Carle, Summer 2005 © UCB

Handling a Single Interrupt (3/3)

 When the interrupt is handled, copy the
value from EPC to the PC.

e Call instruction rfe (return from
exception), which will return process to
user mode and reset state to the way it
was before the interrupt

 What about multiple interrupts?

ﬂ CS61C L25 I/0 (35) A Carle, Summer 2005 © UCB

Multiple Interrupts

*Problem: What if we're handling an
Overflow interrupt and an I/O interrupt
(printer ready, for example) comes in?

e Options:

edrop any conflicting interrupts:
unrealistic, they may be important

e simultaneously handle multi

unrealistic, may not be ab
them (such as with multip

equeue them for later hand
good

ﬂ CS61C L25 1/O (36)

nle interrupts:

e to synchronize

e

/O interrupts)

Ing: sounds

A Carle, Summer 2005 © UCB

Prioritized Interrupts (1/3)

e Question: Suppose we're dealing with
a computer runnln(r:; a nuclear facility.
What if we’re handling an Overflow
iInterrupt and a Nuclear Meltdown
Imminent interrupt comes in?

 Answer: We need to categorize and
prioritize interrupts so we can handle
them in order of urgency: emergency
vs. luxury.

Q CS61C L25 1/0 (37) A Carle, Summer 2005 © UCB

Prioritized Interrupts (2/3)

* OS convention to simplify software:

* Process cannot be preempted by
interrupt at same or lower "level"

e Return to interrupted code as soon as no
more interrupts at a higher level

 When an interrupt is handled, take the
highest priority interrupt on the queue

- may be partially handled, may not, so we
may need to save state of interrupts(!)

ﬂ CS61C L25 1/0 (38) A Carle, Summer 2005 © UCB

Prioritized Interrupts (3/3)

To Implement, we need an Exception
Stack:

e portion of address space allocated for
stack of “Exception Frames”

e each frame represents one interrupt:
contains priority level as well as enough
info to restart handling it if necessary

ﬂ CS61C L25 1/0 (39) A Carle, Summer 2005 © UCB

Modified Interrupt Handler (1/3)

 Problem: When an interrupt comes in,
EPC and Cause get overwritten
iImmediately by hardware. Lost EPC
means loss of user program.

» Solution: Modify interrupt handler.
When first interrupt comes In:

edisable interrupts (in Status Register)

esave EPC, Cause, Status and Priority
Level on Exception Stack

*re-enable interrupts
e continue handling current interrupt

ﬂ CS61C L25 I/O (40) A Carle, Summer 2005 © UCB

Modified Interrupt Handler (2/3)

When next (or any later) interrupt comes
IN:
e Interrupt the first one
edisable interrupts (in Status Register)

esave EPC, Cause, Status and Priority Level
(and maybe more) on Exception Stack

e determine whether new one preempts old
one

- iIf no, re-enable interrupts and continue with
old one

- If yes, may have to save state for the old one,
then re-enable interrupts, then handle new one

ﬂ CS61C L25 1/0 (41) A Carle, Summer 2005 © UCB

Modified Interrupt Handler (3/3)

e Notes:
e Disabling interrupts is dangerous

« SO0 we disable them for as short atime as
possible: long enough to save vital info
onto Exception Stack

* This new scheme allows us to handle
many interrupts effectively.

ﬂ CS61C L251/0 (42) A Carle, Summer 2005 © UCB

Interrupt Levels in MIPS?

\What are they? —

| |+

)
SN

e | S e

J 3‘) | —

P~ AR

1 =

|t depends what the MIPS chip Is
iInside of: differ by app Casio PalmPC,
Sony Playstation, HP LaserJet printer

* MIPS architecture enables priorities
for different 1/O events

Q CS61C L25 1/0 (43) A Carle, Summer 2005 © UCB

Interrupt Levels in MIPS Architecture

« Conventionally, from highest level to
lowest level exception/interrupt levels:

e Bus error

llegal Instruction/Address trap
High priority 1/O Interrupt (fast response)

_ow priority I/O Interrupt (slow response)

e Others

ﬂ CS61C L25 1/O (44) A Carle, Summer 2005 © UCB

Improving Data Transfer Performance

* Thus far: OS give commands to l/O,
/0 device notify OS when the I/O device
completed operation or an error

 What about data transfer to I/O device?
* Processor busy doing loads/stores
between memory and I/O Data Register
|deal: specify the block of memory to be
transferred, be notified on completion?

* Direct Memory Access (DMA) : a simple
computer transfers a block of data to/from
memory and 1I/O, interrupting upon done

ﬂ CS61C L25 I/O (45) A Carle, Summer 2005 © UCB

Example: code in DMA controller
 DMA code from Disk Device to Memory

.data
Count: -word 4096
Start: .space 4096
.text

Initial: Iw $sO, Count # No. chars
la $s1, Start # @next char
Wait: Iw $s2, DiskControl
andl $s2,$s2,1 # select Ready
beq $s2,3$0,Wait # spinwalt
Ib $t0, DiskData # get byte
sb $t0, 0($sl) # transfer
addiu $s0,%$s0,-1 # Count--
addiu $s1,$s1,1 # Start++
bne $s0,$0,Wait # next char

MA “computer” in parallel with CPU

CS61C L25 I/O (46) A Carle, Summer 2005 © UCB

Details not covered

* MIPS has a field to record all pending
Interrupts so that none are lost while
Interrupts are off; in Cause register

* The Interrupt Priority Level that the
CPU Is running at Is set In memory

* MIPS has a field in that can mask
iInterrupts of different priorities to
Implement priority levels; in Status
register

* MIPS has limited nesting of saving
KU,IE bits to recall in case higher
priority interrupts; Iin Status Register

ﬂ CS61C L25 1/0 (47) A Carle, Summer 2005 © UCB

Implementation?

e Take 150 & 152

Q CS61C L25 I/0 (48) A Carle, Summer 2005 © UCB

Peer Instruction

A. A faster CPU will result in faster 1/0.

B. Hardware designers handle mouse input
with interrupts since it is better than
polling in almost all cases.

C. Low-level I/O is actually quite simple, as
It’s really only reading and writing bytes.

ﬂ CS61C L25 I/O (49)

A Carle, Summer 2005 © UCB

“And In conclusion...”

/O gives computers their 5 senses
/O speed range is 100-million to one

* Processor speed means must

synchronize with I/O devices before use

* Polling works, but expensive

e processor repeatedly queries devices

e Interrupts works, more complex

edevices causes an exception, causing
OS to run and deal with the device

/O control leads to Operating Systems

ﬂ CS61C L25 I/0 (50) A Carle, Summer 2005 © UCB

