inst.eecs.berkeley.edu/~cs61c/su05

CS61C : Machine Structures
Lecture #28: Parallel Computing

2005-08-09

@ Andy Carle

A Carle, Summer 2005 o ucs |

Example Applications

° Science

« Global climate modeling

« Biology: genomics; protein folding; drug design

« Astrophysical modeling

« Computational Chemistry

« Computational Material Sciences and Nanosciences
° Engineering

+ Semiconductor design

« Earthquake and structural modeling

« Computation fluid dynamics (airplane design)

« Combustion (engine design)

« Crash simulation
° Business

« Financial and economic modeling

« Transaction processing, web services and search engines
° Defense

« Nuclear weapons -- test by simulations

« Cryptography

@ 64C 128 Paraliel Compuiing ()

Carle, Summer 2005© UCB|

Performance Requirements (2)

°Computational Requirements

* To keep up with real time (i.e. simulate one
minute per wall clock minute):
8 Gflops/sec

« Weather Prediction (7 days in 24 hours):
56 Gflops/sec

« Climate Prediction (50 years in 30 days):
4.8 Tflops/sec

« Climate Prediction Experimentation (50 years in
12 hours): 288 Tflops/sec
°Perspective

* Pentium 4 1.4GHz, 1GB RAM, 4x100MHz FSB
~320 Mflops/sec, effective
Climate Prediction would take ~1233 years

Reference:http:/www.tc.comell.edu/~lifka/Papers/SC200L.pdf
61C 126 Paraliel Computing (5)

ACarle_Summer 2005 © UCB

Scientific Computing

° Traditional Science
1) Produce theories and designs on “paper”
2) Perform experiments or build systems
* Has become difficult, expensive, slow, and
dangerous for fields on the leading edge
° Computational Science
e Use ultra-high performance computers to
simulate the system we're interested in
° Acknowledgement

* Many of the concepts and some of the content
of this lecture were drawn from Prof. Jim
Demmel’s CS 267 lecture slides which can be

l@ found at nttp://www.cs.berkeley.edu/~demmel/cs267_Spro5/

CS61C 128 Parallel Computing (2)

A Carle, Summer 2005 ucs|

Performance Requirements

°Terminology
* Flop — Floating point operation
* Flops/second — standard metric for expressing
the computing power of a system
°Global Climate Modeling
« Divide the world into a grid (e.g. 10 km spacing)

« Solve fluid dynamics equations to determine
what the air has done at that point every minute
Requires about 100 Flops per grid point per minute
* This is an extremely simplified view of how the
atmosphere works, to be maximally effective
you need to simulate many additional systems

on a much finer grid

A Carle, Summer 20050 UCE

What Can We Do?

°Wait
*Moore’s law tells us things are getting
better; why not stall for the moment?

°Parallel Computing!

A Carle,Summer 2005 © UCB

Prohibitive Costs How fast can a serial computer be?

°Rock’s Law ° Consider a 1 Tflop/sec sequential machine:
-~ ; ; «Data must travel some distance, r, to get

* The cost of building a semiconductor chip v

fabrication plant that is capable of producing from memory to CPU)
chips in line with Moore’s law doubles every four *Togetl d%ta element per cycle, this
years means 10% times per sgcond at the

ok z et osicnienln speed of light, c =3x10° m/s. Thus

[l r<c/1012="0.3 mm
- So all of the data we want to process must
- be stored within 0.3 mm of the CPU

° glr%v&\l/.put 1 Tbyte of storage in a0.3 mm x 0.3 mm
*Each word occupijes apout 3 square
Angstroms, the size of a very small atom

*Maybe someday, but it most certainly
isn’t going to involve transistors as we

o e LR | K h
Source: Farbes Macsane —— - - o now them
CS61C 128 Parallel Computing (7) ACarle Summer 2005© UCBY

CS61C 128 Parallel Computing (8)

A Carle, Summer 2005 ucs|

What is Parallel Computing? Recent History
o D|V|d|ng a task among mu|t|p|e ° Parallel Comp.uting as afield exploded in p(.)pula.ri.ty in the mid-1990s
processo ¥3|§°s§|rﬂ't\i'§nat a unified e e e et
“..atl:_-A 3 Pestormance Development
* For today, we will focus on systems with =
many processors executing identical | | | ..
code Ve L
caeett et
°How is this different from - AR e
Multiprogramming (which we’ve !
touched on some in this course)?
°How is this different from Distributed e
Computing? 10p500.01g T i iRt

@ 64C 128 Paraliel Compuling (9) Carle, Summer 2005© UCB| @ CS61C 128 Parallel Compuiing (10

A Carle, Summer 20050 UCE

Current Champions Administrivia
BlueGene/L — IBM/DOE ° Proj 4 Due Friday
Rochester, United States ° HW8 (Optional) Due Friday
32768 Processors, 70.72 Tflops/sec ° Final Exam on Friday
0.7 GHz PowerPC 440 « Yeah, sure, you can have 3 one-sided cheat sheets
But I really don’t think they'll help you all that much
Columbia — NASA/Ames ° Course Survey in lab today

Mountain View, United States
10160 Processors, 51.87 Tflops/sec
1.5 GHz SGI Altix

Earth Simulator — Earth Simulator Ctr.

Yokohama, Japan

5120 Processors, 35.86 Tflops/sec
SX6 Vector

Data Source: top500.0rg

Parallel Programming

°Processes and Synchronization
°Processor Layout

°Other Challenges
e Locality
e Finding parallelism
* Parallel Overhead
*Load Balance

@ CS61C 128 Paraliel Computing (13)

A Carle, Summer 2005 o ucs |

Processes (2)

°We don’t know! Two potential
orderings:

| am the child.l am the parent.
| am the parent.l am the child.

* This situation is a simple race condition.
This type of problem can get far more
complicated...

°Modern parallel compilers and runtime
environments hide the details of
actually calling fork() and moving the
rocesses to individual processors,
ut the complexity of synchronization
remains

paallel Computing

Synchronization (2)

°Some of the |ogistical complexity of
these operations is reduced b
standard communication frameworks

* Message Passing Interface (MPI)
°Sorting out the issue of who holds

what data can be made easier with the
use of explicitly parallel languages

* Unified Parallel C (UPC)
e Titanium (Parallel Java Variant)
°Even with these tools, much of the
skill and challenge of parallel

programmmg is in resolving these
lems

Processes

°We need a mechanism to intelligently
split the execution of a program
°Fork:
int main(...{

int pid = fork();

if (pid == 0) printf(“1 am the child.”);

if (pid !'=0) printf(“l am the parent.”);

return O;

}

ACarle_Summer 2005 © UCB

7 What will this print?

CS61C 128 Parallel Computing (14)

A Carle_ Summer 2005@ uca)

Synchronization

°How do processors communicate with
each other?

°How do processors know when to
communicate with each other?

°How do processors know which other
processor has the information they
need?

°When you are done computing, which
processor, or processors, have the
answer?

@ CS61C 128 Parallel Compuiing (16 ACarle, Summer 20050 UCE

Processor Layout

Generalized View

T 0

Interconnection Network

‘ Memory ‘

M = Memory local to one processor

Memory = Memory local to all other processors

A Carle,Summer 2005 © UCB

Processor Layout (2)

[I = Shared Memory
memory
PO NI NI Em
|mem°'y| memoi|{ .- Ié Distributed Memory
[interconnect]

@ CS61C 128 Paraliel Computing (19)

A Carle, Summer 2005 o ucs |

Parallel Locality

° We now have to expand our view of the memory hierarchy to include
remote machines

° Remote memory behaves like a very fast network
« Bandwidth vs. Latency becomes important

Instr. Operands

Blocks

Blocks
Remote Memory

Large Data Blocks
Qf Local and Remote Disk

64C 128 Paraliel Compuling (2)

Carle, Summer 2005© UCB|

Parallel Overhead

°Given enough parallel work, these are the
biggest barfiers to getting desired speedup

°Parallelism overheads include:

« cost of starting a thread or process

¢ cost of communicating shared data

« cost of synchronizing

« extra (redundant) computation
°Each of these can be in the range of

milliseconds (many millions of flops) on
some systems

° Tradeoff: Algorithm needs sufficiently large
units of work to run fast in parallel (l.e. large
granularlt)Q, but not so large that there is

anot enough parallel work

ACarle_Summer 2005 © UCB

Processor Layout (3)

°Clusters of SMPs

*n of the N total processors share one
memory

* Simple shared memory communication
within one cluster of n processors

* Explicit network type calls to
communicate from one group of n to
another

°Understanding the processor layout
that your application will be running
on is crucial!

A Carle_ Summer 2005@ uca)

Amdahl’s Law

°Applications can almost never be
completely parallelized

°Let s be the fraction of work done
sequentially, so (1-s) is fraction
parallelizable, and P’= number of
processors
Speedup(P) = Time(1)/Time(P)
<= 1/(s + (1-s)/P)
<=1/s
°Even if the parallel portion of your

application speeds up. perfect our
pg%ormance%ay belcl)ir%ited b)}/’cIXe

IQfsequentlal portion

A Carle, Summer 20050 UCE

Load Balance

°Load imbalance is the time that some processors in
the system are idle due to

e insufficient parallelism (during that phase)
* unequal size tasks

° Examples of the latter
» adapting to “interesting parts of a domain”
« tree-structured computations
« fundamentally unstructured problems

° Algorithms need to carefully balance load

A Carle,Summer 2005 © UCB

Summary

°Parallel Computing is a multi-billion
dollar industry driven by interesting
and useful scientific computing
applications

°lt is extremely unlikely that sequential
computing will ever again catch up
with the processing power of parallel
systems

°Programming parallel systems can be
extremely challenging, but is built
upon many of the concepts you've
learned this semester in 61c

CS61C 128 Parallel Conpuiing (25) ACarle, Summer 2005© UcB

