inst.eecs.berkeley.edu/~cs61c/su05

CS61C : Machine Structures
Lecture #29: Intel & Summary

2005-08-10

& ~ Andy Carle

MIPS is example of RISC

*RISC = Reduced Instruction Set
Computer

*Term coined at Berkeley, ideas pioneered
by IBM, Berkeley, Stanford
*RISC characteristics:
« Load-store architecture
« Fixed-length instructions (typically 32 bits)
* Three-address architecture
*RISC examples: MIPS, SPARC,

IBM/Motorola PowerPC, Compaq Alpha,
ARM, SH4, HP-PA, ...

CS 61C 12 Intel & Review (3) A Carle, Summer 2005 © ucs)

MIPS vs. Intel 80x86

*MIPS: “Three-address architecture”
« Arithmetic-logic specify all 3 operands
add $s0,%$s1,$s2 # sO=sl+s2

« Benefit: fewer instructions = performance

+x86: “Two-address architecture”

*Only 2 operands,
so the destination is also one of the sources

add $s1,$s0 # s0=s0+sl
« Often true in C statements: ¢ += b;

CS 61C 129 Intel & Roviow (5) Acar

z « Benefit: smaller instructions = smaller code

Review

*Benchmarks
« Attempt to predict performance
*Updated every few years

* Measure everything from simulation of
desktop graphics programs to battery life

*Megahertz Myth
* MHz # performance, it’s just one factor

MIPS VS. 80386
« Address: 32-bit * 32-bit
* Page size: 4KB *4KB

« Data aligned « Data unaligned

« Destination reg: Left <Right
eadd $rd,$rsl,$rs2 eadd %rs1,%rs2,%rd

*Regs: $0, $1, ..., $31 + %r0, %r1, ..., %r7
*Reg = 0: $0 *(n.a.)
* Return address: $31 - (n.a.)

@ S 61C 129 Intel & Review (4) A Carle, Summer 2005 o ucs]

MIPS vs. Intel 80x86
*MIPS: “load-store architecture”

* Only Load/Store access memory; rest
operations register-register; e.g.,
Iw $t0, 12($gp)
add $s0,%$s0,$t0 # sO=sO0+Mem[12+gp]

« Benefit: simpler hardware = easier to pipeline,
higher performance

*x86: “reqister-memory architecture”

« All operations can have an operand in memory;
other operand is a register; e.g.,

add 12(%gp),%s0 # sO0=sO+Mem[12+gp]
Benefit: fewer instructions = smaller code

S 61C 129 Intel & Review (6) Acarle,

MIPS vs. Intel 80x86

* MIPS: “fixed-length instructions”
« All instructions same size, e.g., 4 bytes
*simple hardware = performance
e branches can be multiples of 4 bytes

*x86: “variable-length instructions”
¢ Instructions are multiple of bytes: 1 to 17;
= small code size (30% smaller?)

* More Recent Performance Benefit:
better instruction cache hit rates

« Instructions can include 8- or 32-bit immediates

CS61C 120 Intel & Roviow (7) Acarle

Instructions:MIPS vs. 80x86

e addu, addiu «addl

e subu *subl

eand,or, Xor eandl, orl, xorl

esll, srl, sra esall, shrl, sarl

o lw emovl mem, reg
*SW *movl reg, mem
* mov «movl reg, reg
ol emovl Imm, reg
o lui *n.a.

@ S 61C 129 Intol & Review (9)

A Carle, Summer 2005 o ucs]

Branches in 80x86

*Rather than compare registers, x86
uses special 1-bit registers called
“condition codes” that are set as a
side-effect of ALU operations

S - Sign Bit
eZ - Zero (result is all 0)
«C - Carry Out

P - Parity: set to 1 if even number of ones
in rightmost 8 bits of operation

« Conditional Branch instructions then
use condition flags for all
@comparisons: <, <=,3,>=, == 1=

CS 61C 129 Intel & Reviow (1) Acar

Unusual features of 80x86

8 32-bit Registers have names;
16-bit 8086 names with “e” prefix:

eeax, ecx, edx, ebx, esp, ebp, esi, edi
*80x86 word is 16 bits, double word is 32 bits
*PC is called eip (instruction pointer)

*leal (load effective address)

* Calculate address like a load, but load address
into register, not data

* Load 32-bit address:
leal -4000000(%ebp) ,%esi

z # esi = ebp - 4000000

80386 addressing (ALU instructions too)

*base reg + offset (like MIPS)
emovl -8000044(%ebp), %eax

*base reg + index reg (2 regs form addr.)
emovl (%eax,%ebx),%edi
edi = Mem[ebx + eax]
*scaled reg + index (shift one reg by 1,2)
emovl (%eax,%edx,4) ,%ebx
ebx = Mem[edx*4 + eax]
escaled reg + index + offset

emovl 12(%eax,%edx,4) ,%ebx
@ # ebx = Mem[edx*4 + eax + 12]

CS 61C 120 Intel & Roview (10)

A Carle, Summer 2005 o ucs]

Branch: MIPS vs. 80x86

*beq *(cmpl;) je
if previous operation
set condition code, then
cmpl unnecessary

*bne «(cmpl;) jne

*slt; beq e (cmpl;) jlt

+slt; bne * (cmpl;) jge

« jal ecall

jr $31 eret

While in C/Assembly: 80x86
c while (save[i]==k)
i=1+j;

(1,j,K: %edx,%esi ,%ebx)

leal -400(%ebp) ,%eax
-Loop: cmpl %ebx, (%eax,%edx,4)
X jne .Exit
8 addl %esi ,%edx
6 j -Loop

-Exit:
Note: cmpl replaces sli, add, Iw in loop

ﬁggcmmmmhm acus

Outline

¢Intro to x86
¢ Microarchitecture

@ S 61C 129 Inte) & Review (15)

A Carle, Summer 2005 o ucs]

Unusual features of 80x86

*Memory Stack is part of instruction set

«<call places return address onto stack,
increments esp (Mem[esp]=eip+6; esp+=4)

epush places value onto stack, increments esp
=pop gets value from stack, decrements esp
«incl, decl (increment, decrement)

incl %edx # edx = edx + 1
« Benefit: smaller instructions = smaller code

Pentium, Pentium Pro, Pentium 4 Pipeline

Prefetch Cecode | Decode Execute Write-back

P5 Microarchitecture

Fetch Fetch | Decode | Decode | Decode | Rename | ROE Rd | Redy/Sch | Dispateh | Execute

P& Mieroarchitecture

*Pentium (P5) =5 sta%es
Pentium Pro, II, lll (P6) = 10 stages

Renart 8/280

ﬁ&!cmuww_m sca

Intel Internals

*Hardware below instruction set called
"microarchitecture”

* Pentium Pro, Pentium I, Pentium Ill all
based on same microarchitecture
(1994)

*Improved clock rate, increased cache size

* Pentium 4 has new microarchitecture

@ CS 61C 129 Intel & Review (16)

A Carle, Summer 2005 o ucs]

Dynamic Scheduling in Pentium Pro, II, Il
* PPro doesn’t pipeline 80x86 instructions
* PPro decode unit translates the Intel
instructions into 72-bit "micro-operations"
(~ MIPS instructions)

* Takes 1 clock cycle to determine length
of 80x86 instructions + 2 more to create
the micro-operations

* Most instructions translate to 1 to 4
micro-operations

*10 stage pipeline for micro-operations

ﬁ&gcmmwm‘m s

Dynamic Scheduling

Consider:
Iw $t0 0($t0)
add $s1 $s1 $s1 # will be stalled in
add $s2 $s1 $s1 # pipe waiting for Iw

might miss in mem

Solutions:
* Compiler (STATIC) reordering (loops?)
* Hardware (DYNAMIC) reordering

Hardware for OOO execution

-Nee(itHWfbuffer for_tt d
results of uncommitte —
instructions:

Reorder
Buffer

« Reorder buffer can be IF
operand source Issue

Lo -
*Once operand commits, |

result is found in I
register ‘ Res Stations ‘ ‘ Res Stations ‘

*Discard results on
mispredicted branches
or on exceptions

@ S 61C 120 Inte) & Review (1)

A Carle, Summer 2005 o ucs]

Pentium, Pentium Pro, Pentium 4 Pipeline

Prefetch Cecode | Decode Execute Write-back

P5 Microarchitecture

Feteh Fetch | Degode | Decode | Decode | Rename ROI!Rd Rely/Seh Olspalch Execute

P(. Mie P itecture

TC Mxt IP TC Fetch Drive Alloc Rename Queue Schedule

Schedule| Schedule | Dispateh | Dispaich | Reg File | Reg File | Execute | Flags Branch €k Drive

NetBurst Microarchitecture

*Pentium (P5) = 5 sta es
Pentium Pro, II, lll (P6) = 10 stages
Pentium 4 (NetBurst) 20 stages

» Mi Renart 8/280

Hardware support for reordering

: allow
an instruction to execute before prior
instructions have executed.

« Speculation across branches

*When instruction no longer
specula)tlve write results (

*Fetchl/issue in-order, execute 00O,
commit in order

*«Watch out for hazards!

Dynamic Scheduling in Pentium Pro
Max. instructions issued/clock 3

Max. instr. complete exec./clock 5
Max. instr. commited/clock 3
Instructions in reorder buffer 40

2 integer functional units (FU), 1 floating
Eamt U, 1 branch FU, 1 Loa FU 1 Store

@c §1C 129 Intel & Review (22)

A Carle, Summer 2005 o ucs]

Pentium 4
« Still translate from 80x86 to micro-ops
*P4 has better branch predictor, more FUs

*Clock rates:
« Pentium Il 1 GHz v. Pentium IV 1.5 GHz
*10 stage pipeline vs. 20 stage pipeline

eFaster memory bus: 400 MHz v. 133 MHz

Pentium 4 features

* Multimedia instructions 128 bits wide
vs. 64 bits wide => 144 new instructions

*When used by programs??
*Instruction Cache holds micro-
operations vs. 80x86 instructions
*no decode stages of 80x86 on cache hit
e called “trace cache” (TC)

Pentium, Pentium Pro, Pentium 4 Pipeline

Prefetch | Decode | Decode | Execute Write-back

P35 Microarchitecture

| Feteh Fetch |Decode Decode | Decode | Rename | ROE Rd | Rdy/Sch | Dispateh | Execute

P& Microarchitecture

TC Nxt IP TC Fetch Drive Alloe Rename Queue | Schedule
L L

Schedule | Schedule | Dispatch | Dispatch | Reg File | Reg File | Execute

Flags BranchCk Drive

MetBurst Microarchitecture

*Pentium (P5) = 5 stages
Pentium Pro, II, lll (P6) = 10 stages
Pentium 4 (NetBurst) = 20 stages

@entium 4 (Partially) Previewed,” Microprocessor Report, 8/28/00

CS 61C 129 Intol & Review (27) A Carle, Summer 2005 © ucs)

EConventional Wisdom (CW) in Comp Arch

* Old CW: Power free, Transistors expensive

« New CW: Power expensive, Transistors free
« Can put more on chip than can afford to turn on

* Old CW: Chips reliable internally, errors at pins
*New CW: = 65 nm = high error rates
* Old CW: CPU manufacturers minds closed

*«New CW: Power wall + Memory gap = Brick wall
* New idea receptive environment

» Old CW: Uniprocessor performance 2X /1.5 yrs

*New CW: 2X CPUs per socket / ~ 2 to 3 years
@ * More simpler processors more power efficient

Thanks to Dave Patterson for these

CS 61C 129 Intel & Reviow (29) Acar

Block Diagram of Pentium 4 Microarchitecture

BTB and I-TLB —_—

1
86 Instruction Decoder

Microcode. !
geade— Exceution Trace Cache — BTB
Rename and Allocate
[RE] L
Micra-op Queues Cache
Schedulers
IRREEN
FP Reg File Integer Reg File
1
Etvul |[FP Move Load || store |ALU|ALU
FAdd | FP Store
Mmx
s5E

L1 D-Cache and D-TLB ——

« BTB = Branch Target Buffer (branch predictor)
« |-TLB = Instruction TLB, Trace Cache = Instruction cache
* RF = Register File; AGU = Address Generation Unit
E « "Double pumped ALU" means ALU clock rate 2X => 2X ALU F.U.s

S 61129 Intel & Review (26) Acarle,

CS61C: So what's in it for me? (15t lecture)
Learn some of the big ideas in CS & engineering:
* 5 Classic components of a Computer
« Principle of abstraction, systems built as layers

« Data can be anything (integers, floating point,
characters): a program defermines what it is

« Stored program concept: instructions just data
« Compilation v. interpretation thru system layers

« Principle of Locality, exploited via a memory
hierarchy (cache)

« Greater performance by exploiting parallelism
(pipelining)

QrincipleslPitfalls of Performance Measurement

CS 61C 120 Intel & Roview (28) A Carle, Summer 2005 9 uca|

Massively Parallel Socket

* Processor = new transistor?

* Does it only help
power/cost/performance?

« Intel 4004 (1971): 4-bit processor,
2312 transistors, 0.4 MHz,
10 ym PMOS, 11 mm?2 chip

« RISC Il (1983): 32-bit, 5 stage
gipeline, 40,760 transistors, 3 MHz, |
um NMOS, 60 mm2 chip
« 4004 shrinks to ~ 1 mm? at 3 micron
* 125 mm? chip, 65 nm CMOS
=2312 RISC lIs + Icache + Dcache
« RISC Il shrinks to ~ 0.02 mm? at 65 nm
» Caches via DRAM or 1 transistor SRAM (www.t-ram.com)?
* Proximity Communication at > 1 TB/s ?

g :’r Ivan Sutherland @ Sun spending time in Berkeley!

S 61C 129 Intel & Review (30) Acarle,

20th vs. 21st Century IT Targets

» 20th Century Measure of Success
* Performance (peak vs. delivered)
 Cost (purchase cost vs. ownership cost, power)

* 21st Century Measure of Success? “SPUR”
« Security
* Privacy
« Usability
* Reliability
» Massive parallelism greater chance (this time) if
* Measure of success is SPUR vs. only cost-perf
« Uniprocessor performance improvement decelerates

CS61C 120 Intel & Roviow (31) Acarle

Administrivia

* There IS discussion today
* No lab tomorrow
* Review session tomorrow instead of lecture

* Make sure to talk to your TAs and get your labs
taken care of.

«If you did well in CS3 or 61{A,B,C}
(A- or above) and want to be on staff?
« Usual path: Lab assistant = Reader = TA
« Fill in form outside 367 Soda before first week of
semester...

» We strongly encourage anyone who gets an A- or
@ above in the class to follow this path...

CS 61C 129 Intol & Review (33)

A Carle, Summer 2005 o ucs]

Other Implications

*Need to revisit chronic unsolved problem
* Parallel programming!! (Thanks again Andy)

«Implications for applications:

* Computing power >>> CDC6600, Cray XMP
(choose your favorite) on an economical die
inside your watch, cell phone or PDA

- On your body health monitoring
- Google + library of congress on your PDA

* As devices continue to shrink...
*The need for great HCI critical as ever!

Penultimate slide: Thanks to the staff!

*TAs *Readers
*Dominic *Funshing
e Zach ¢ Charles

Thanks to Dave Patterson, John
Wawrzynek, Dan Garcia, Mike
Clancy, Kurt Meinz, and everyone
else that has worked on these
lecture notes over the years.

Taking advantage of Cal Opportunities

“The Godfather answers all of Iif_g’s questions”

— Heard in “You've got Mail’

*Why are we the #2 Univ in the WORLD?
* ReSE4TER YESEEER, FegBartep Fiucaion Suplement

* Whether you want to go to grad school or
industry, you need someone to vouch for
you! (as is the case with the Mob)

*Techniques

* Find out what you like, do lots of web
research (read published papers), hit OH
of Prof, show enthusiasm & initiative (and
get to know grad students!)

http://research._berkeley.edu/

A Carle, Summer 2005 o ucs]

CS 61C 120 Intel & Roviow (34)

The Future for Future Cal Alumni
*What’s The Future?

*New Millennium
¢ Internet, Wireless, Nanotechnology, ...
*Rapid Changes in Technology
*«World’s .. Best Education
*Never Give Up!

“The best way to predict the future is to
invent it” — Alan Kay

The Future is up to you!

