
CS 61C L11 Floating Point (1) A Carle, Summer 2006 © UCB

 inst.eecs.berkeley.edu/~cs61c/su06

CS61C : Machine Structures

Lecture #20: Midterm 2 Review

Midterm 2: Friday 11-2
390 Hearst Mining

2006-08-01

CS 61C L11 Floating Point (2) A Carle, Summer 2006 © UCB

Scientific Notation (in
Binary)

1.0two x 2-1

radix (base)“binary point”

exponent

• Normalized mantissa always has exactly
one “1” before the point.

• Computer arithmetic that supports it called
floating point, because it represents
numbers where binary point is not fixed, as
it is for integers

• Declare such variable in C as float

mantissa

CS 61C L11 Floating Point (3) A Carle, Summer 2006 © UCB

Floating Point Representation

• Normal format: +1.xxxxxxxxxxtwo*2yyyytwo

• Multiple of Word Size (32 bits):

031
S Exponent
30 23 22

Significand
1 bit 8 bits 23 bits

• S represents Sign

• Exponent represents y’s

• Significand represents x’s
Represent numbers as small as
2.0 x 10-38 to as large as 2.0 x 1038

CS 61C L11 Floating Point (4) A Carle, Summer 2006 © UCB

Double Precision Fl. Pt.
Representation• Next Multiple of Word Size (64 bits)

• Double Precision (vs. Single Precision)
• C variable declared as double
• Represent numbers almost as small as
2.0 x 10-308 to almost as large as 2.0 x 10308

• But primary advantage is greater accuracy
due to larger significand

031
S Exponent

30 20 19
Significand

1 bit 11 bits 20 bits
Significand (cont’d)

32 bits

CS 61C L11 Floating Point (5) A Carle, Summer 2006 © UCB

IEEE 754 Floating Point Standard
• Called Biased Notation, where bias is
number subtracted to get real number
• IEEE 754 uses bias of 127 for single prec.
• Subtract 127 from Exponent field to get actual
value for exponent

• Summary (single precision):
031

S Exponent
30 23 22

Significand
1 bit 8 bits 23 bits
• (-1)S x (1 + Significand) x 2(Exponent-127)

• Double precision identical, except with
exponent bias of 1023

CS 61C L11 Floating Point (6) A Carle, Summer 2006 © UCB

Representation for ±
∞
• In FP, divide by 0 should produce ± , ∞
not overflow.

• Why?
• OK to do further computations with ∞
E.g., X/0 > Y may be a valid comparison

• Ask math majors

• IEEE 754 represents ± ∞
• Most positive exponent reserved for ∞
• Significands all zeroes

CS 61C L11 Floating Point (7) A Carle, Summer 2006 © UCB

Representation for
0• Represent 0?

• exponent all zeroes
• significand all zeroes
• What about sign?
•+0: 0 00000000 00000000000000000000000
•-0: 1 00000000 00000000000000000000000

• Why two zeroes?
• Helps in some limit comparisons
• Ask math majors

CS 61C L11 Floating Point (8) A Carle, Summer 2006 © UCB

Representation for Not a
Number
• What is sqrt(-4.0)or 0/0?

• If not an error, these shouldn’t be either.∞
• Called Not a Number (NaN)
• Exponent = 255, Significand nonzero

• Why is this useful?
• Hope NaNs help with debugging?
• They contaminate: op(NaN,X) = NaN

CS 61C L11 Floating Point (9) A Carle, Summer 2006 © UCB

Representation for Denorms
(1/2)• Problem: There’s a gap among

representable FP numbers around 0
• Smallest representable pos num:

a = 1.0… 2 * 2-126 = 2-126

• Second smallest representable pos num:
b = 1.000……1 2 * 2-126 = 2-126 + 2-149

a - 0 = 2-126

b - a = 2-149

b

a0
+-

Gaps!

Normalization
and implicit 1
is to blame!

CS 61C L11 Floating Point (10) A Carle, Summer 2006 © UCB

Representation for Denorms
(2/2)
• Solution:

• We still haven’t used Exponent = 0,
Significand nonzero

• Denormalized number: no leading 1, implicit
exponent = -126.

• Smallest representable pos num:
a = 2-149

• Second smallest representable pos num:
b = 2-148

0
+-

CS 61C L11 Floating Point (11) A Carle, Summer 2006 © UCB

IEEE Four Rounding
Modes
• Round towards + ∞

• ALWAYS round “up”: 2.1 ⇒ 3, -2.1 ⇒ -2

• Round towards - ∞
• ALWAYS round “down”: 1.9 ⇒ 1, -1.9 ⇒ -2

• Truncate
• Just drop the last bits (round towards 0)

• Round to (nearest) even (default)
• Normal rounding, almost: 2.5 ⇒ 2, 3.5 ⇒ 4
• Like you learned in grade school
• Insures fairness on calculation
• Half the time we round up, other half down

CS 61C L11 Floating Point (12) A Carle, Summer 2006 © UCB

Integer Multiplication

• Example:
• in C: a = b * c;
• in MIPS:

- let b be $s2; let c be $s3; and let a be $s0
and $s1 (since it may be up to 64 bits)

mult $s2,$s3 # b*c mfhi $s0 # upper half of # product into $s0mflo $s1 # lower half of # product into $s1
• Note: Often, we only care about the
lower half of the product.

CS 61C L11 Floating Point (13) A Carle, Summer 2006 © UCB

Integer Division

• Syntax of Division (signed):
•div register1, register2
• Divides 32-bit register 1 by 32-bit register 2:
• puts remainder of division in hi, quotient in lo

• Implements C division (/) and modulo (%)
• Example in C: a = c / d;b = c % d;
• in MIPS: a↔$s0;b↔$s1;c↔$s2;d↔$s3

div $s2,$s3 # lo=c/d, hi=c%d mflo $s0 # get quotientmfhi $s1 # get remainder

CS 61C L11 Floating Point (14) A Carle, Summer 2006 © UCB

Unsigned Instructions &
Overflow
• MIPS also has versions of mult, div
for unsigned operands:

multu
divu

• Determines whether or not the product
and quotient are changed if the operands
are signed or unsigned.

• MIPS does not check overflow on ANY
signed/unsigned multiply, divide instr

• Up to the software to check hi

CS 61C L11 Floating Point (15) A Carle, Summer 2006 © UCB

FP Addition &
Subtraction
• Much more difficult than with integers
(can’t just add significands)

• How do we do it?
• De-normalize to match larger exponent
• Add significands to get resulting one
• Normalize (& check for under/overflow)
• Round if needed (may need to renormalize)

• If signs , do a subtract. (Subtract similar)≠
• If signs for add (or = for sub), what’s ans ≠

sign?

CS 61C L11 Floating Point (16) A Carle, Summer 2006 © UCB

MIPS Floating Point Architecture

• Separate floating point instructions:
• Single Precision: add.s, sub.s, mul.s, div.s
• Double Precision: add.d, sub.d, mul.d, div.d

• These are far more complicated than
their integer counterparts

• Can take much longer to execute

CS 61C L11 Floating Point (17) A Carle, Summer 2006 © UCB

MIPS Floating Point Architecture

• 1990 Solution: Make a completely
separate chip that handles only FP.

• Coprocessor 1: FP chip
• contains 32 32-bit registers: $f0, $f1, …
• most of the registers specified in .s and .d instruction refer to this set
• separate load and store: lwc1 and swc1
(“load word coprocessor 1”, “store …”)

• Double Precision: by convention,
even/odd pair contain one DP FP number: $f0/$f1, $f2/$f3, … , $f30/$f31

- Even register is the name

CS 61C L11 Floating Point (18) A Carle, Summer 2006 © UCB

FP/Math
Summary
• Reserve exponents, significands:

Exponent Significand Object
0 0 0
0 nonzero Denorm
1-254 anything +/- fl. pt. #
255 0 +/- ∞
255 nonzero NaN

• Integer mult, div uses hi, lo regs
•mfhi and mflo copies out.

• Four rounding modes (to even default)

• MIPS FL ops complicated, expensive

CS 61C L11 Floating Point (19) A Carle, Summer 2006 © UCB

True Assembly Language

• Pseudoinstruction: A MIPS instruction
that doesn’t turn directly into a machine
language instruction, but into other
MIPS instructions

• What happens with pseudoinstructions?
• They’re broken up by the assembler into
several “real” MIPS instructions.

• But what is a “real” MIPS instruction?
Answer in a few slides

• First some examples

CS 61C L11 Floating Point (20) A Carle, Summer 2006 © UCB

Example
Pseudoinstructions

• Register Move
movereg2,reg1
Expands to:
add reg2,$zero,reg1

• Load Immediate
li reg,value
If value fits in 16 bits:
addireg,$zero,value
else:
lui reg,upper 16 bits of value
ori reg,$zero,lower 16 bits

CS 61C L11 Floating Point (21) A Carle, Summer 2006 © UCB

True Assembly Language

• Problem:
• When breaking up a pseudoinstruction, the
assembler may need to use an extra reg.

• If it uses any regular register, it’ll overwrite
whatever the program has put into it.

• Solution:
• Reserve a register ($1, called $at for
“assembler temporary”) that assembler will
use to break up pseudo-instructions.

• Since the assembler may use this at any
time, it’s not safe to code with it.

CS 61C L11 Floating Point (22) A Carle, Summer 2006 © UCB

Steps to Starting a
Program C program: foo.c

Compiler

Assembly program: foo.s
Assembler

Linker

Executable(mach lang pgm): a.out
Loader

Memory

Object(mach lang module): foo.o
lib.o

CS 61C L11 Floating Point (23) A Carle, Summer 2006 © UCB

Compile
r
• Input: High-Level Language Code
(e.g., C, Java such as foo.c)

• Output: Assembly Language Code
(e.g., foo.s for MIPS)

• Note: Output may contain
pseudoinstructions

• Pseudoinstructions: instructions that
assembler understands but not in
machine (last lecture) For example:

• mov $s1,$s2 ⇒ or $s1,$s2,$zero

CS 61C L11 Floating Point (24) A Carle, Summer 2006 © UCB

Assemble
r
• Input: MAL Assembly Language Code
(e.g., foo.s for MIPS)

• Output: Object Code, information tables
(e.g., foo.o for MIPS)

• Replace Pseudoinstructions

• Produce Machine Language

• Creates Object File

CS 61C L11 Floating Point (25) A Carle, Summer 2006 © UCB

Producing Machine Language

• Constraint on Assembler:
• The object file output (foo.o) may be only
one of many object files in the final
executable:

- C: #include “my_helpers.h”
- C: #include <stdio.h>

• Consequences:
• Object files won’t know their base
addresses until they are linked/loaded!

• References to addresses will have to be
adjusted in later stages

CS 61C L11 Floating Point (26) A Carle, Summer 2006 © UCB

Object File
Format
• object file header: size and position of
the other pieces of the object file

• text segment: the machine code

• data segment: binary representation
of the data in the source file

• relocation information: identifies lines
of code that need to be “handled”

• symbol table: list of this file’s labels
and data that can be referenced

• debugging information

CS 61C L11 Floating Point (27) A Carle, Summer 2006 © UCB

Link Editor/Linker

.o file 1
text 1

data 1

info 1

.o file 2
text 2

data 2

info 2

Linker

a.out
Relocated text 1

Relocated text 2

Relocated data 1

Relocated data 2

CS 61C L11 Floating Point (28) A Carle, Summer 2006 © UCB

Link Editor/Linker

• Step 1: Take text segment from each
.o file and put them together.

• Step 2: Take data segment from each
.o file, put them together, and
concatenate this onto end of text
segments.

• Step 3: Resolve References
• Go through Relocation Table and handle
each entry

• That is, fill in all absolute addresses

CS 61C L11 Floating Point (29) A Carle, Summer 2006 © UCB

Loader

• Input: Executable Code
(e.g., a.out for MIPS)

• Output: (program is run)

• Executable files are stored on disk.

• When one is run, loader’s job is to
load it into memory and start it
running.

• In reality, loader is the operating
system (OS)

• loading is one of the OS tasks

CS 61C L11 Floating Point (30) A Carle, Summer 2006 © UCB

True Assembly Language

• MAL (MIPS Assembly Language): the set
of instructions that a programmer may
use to code in MIPS; this includes
pseudoinstructions

• TAL (True Assembly Language): set of
instructions that can actually get
translated into a single machine
language instruction (32-bit binary
string)

• A program must be converted from MAL
into TAL before translation into 1s & 0s.

CS 61C L11 Floating Point (31) A Carle, Summer 2006 © UCB

Logic Gates

CS 61C L11 Floating Point (32) A Carle, Summer 2006 © UCB

Logic Gates

CS 61C L11 Floating Point (33) A Carle, Summer 2006 © UCB

Boolean Algebra

y = a • b + a • c + b • c

y = ab + ac + bc

CS 61C L11 Floating Point (34) A Carle, Summer 2006 © UCB

Laws of Boolean Algebra

CS 61C L11 Floating Point (35) A Carle, Summer 2006 © UCB

Register Details…What’s in it
anyway?

• n instances of a “Flip-Flop”, called that
because the output flips and flops betw. 0,1

• D is “data”

• Q is “output”

• Also called “d-q Flip-Flop”,“d-type Flip-Flop”

CS 61C L11 Floating Point (36) A Carle, Summer 2006 © UCB

What’s the timing of a Flip-flop?

• Edge-triggered D-type flip-flop
• This one is “positive edge-triggered”

• “On the rising edge of the clock, the input d
is sampled and transferred to the output. At
all other times, the input d is ignored.”

CS 61C L11 Floating Point (37) A Carle, Summer 2006 © UCB

Finite State Machines
Introduction

CS 61C L11 Floating Point (38) A Carle, Summer 2006 © UCB

Finite State Machine Example: 3
ones…

Draw the FSM…

100110
000010
010101
000001
001100
000000

OutputNSInputPS

CS 61C L11 Floating Point (39) A Carle, Summer 2006 © UCB

Hardware Implementation of
FSM

+

= ?

CS 61C L11 Floating Point (40) A Carle, Summer 2006 © UCB

Step 1: Abstract
Implementation

Data
Out

Clk

5

Rw Ra Rb
32 32-bit
Registers

Rd

A
L

U

Clk

Data
In

Data
Address Ideal

Data
Memory

Instruction

Instruction
Address

Ideal
Instruction

Memory

C
lk

PC

5
Rs

5
Rt

32

32
3232
A

B

N
ex

t A
dd

re
ss

Control

Datapath

Control SignalsConditions

CS 61C L11 Floating Point (41) A Carle, Summer 2006 © UCB

Combinational Logic: More Elements

•Adder

•MUX

•ALU

32

32

A

B
32 Sum

Carry

32

32

A

B
32 Result

OP

32A

B 32

Y32

Select

A
dder

M
U

X
A

LU

CarryIn

CS 61C L11 Floating Point (42) A Carle, Summer 2006 © UCB

Storage Element: Idealized
Memory

• Memory (idealized)
• One input bus: Data In
• One output bus: Data Out

• Memory word is selected by:
• Address selects the word to put on Data Out
• Write Enable = 1: address selects the memory

word to be written via the Data In bus
• Clock input (CLK)

• The CLK input is a factor ONLY during write
operation

• During read operation, behaves as a
combinational logic block:

- Address valid => Data Out valid after “access
time.”

Clk

Data In

Write Enable

32 32
DataOut

Address

CS 61C L11 Floating Point (43) A Carle, Summer 2006 © UCB

Storage Element: Register
File• Register File consists of 32 registers:

• Two 32-bit output busses:
 busA and busB
• One 32-bit input bus: busW

• Register is selected by:
• RA (number) selects the register to put on busA (data)
• RB (number) selects the register to put on busB (data)
• RW (number) selects the register to be written

via busW (data) when Write Enable is 1
• Clock input (CLK)

• The CLK input is a factor ONLY during write operation
• During read operation, behaves as a combinational

logic block:
- RA or RB valid => busA or busB valid after “access time.”

Clk

busW

Write Enable

32
32

busA

32
busB

5 5 5
RWRA RB

32 32-bit
Registers

CS 61C L11 Floating Point (44) A Carle, Summer 2006 © UCB

Clocking
Methodology

• Storage elements clocked by same edge
• Being physical devices, flip-flops (FF) and
combinational logic have some delays
• Gates: delay from input change to output change
• Signals at FF D input must be stable before active clock

edge to allow signal to travel within the FF, and we have
the usual clock-to-Q delay

• “Critical path” (longest path through logic)
determines length of clock period

Clk

.

.

.

.

.

.

.

.

.

.

.

.

CS 61C L11 Floating Point (45) A Carle, Summer 2006 © UCB

Register-Register Timing: One complete
cycle

32
Result

ALUctr

Clk

busW

RegWr

32
32

busA

32
busB

5 5 5

Rw Ra Rb
32 32-bit
Registers

Rs RtRd

A
LU

Clk

PC
Rs, Rt, Rd,
Op, Func

ALUctr

Instruction Memory Access Time

Old Value New Value

RegWr Old Value New Value

Delay through Control Logic

busA, B
Register File Access
TimeOld Value New Value

busW
ALU Delay

Old Value New Value

Old Value New Value

New ValueOld Value

Register Write
Occurs Here

CS 61C L11 Floating Point (46) A Carle, Summer 2006 © UCB

Putting it All Together:A Single Cycle
Datapath

im
m

16

32

ALUctr

Clk

busW

RegWr

32
32

busA

32
busB

55 5

Rw Ra Rb
32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst

E
xtender

M
ux

3216imm16

ALUSrcExtOp

M
ux

MemtoReg

Clk

Data In
WrEn32 Adr

Data
Memory

MemWr
A

L
U

Equal

Instruction<31:0>

0

1

0

1

01

<21:25>

<16:20>

<11:15>

<0:15>

Imm16RdRtRs

=

A
dder

A
dder

PC

Clk

00M
ux

4

nPC_sel

PC
 E

xt

Adr

Inst
Memory

CS 61C L11 Floating Point (47) A Carle, Summer 2006 © UCB

An Abstract View of the Critical
Path Critical Path (Load Operation) =

 Delay clock through PC (FFs) +
 Instruction Memory’s Access Time +
 Register File’s Access Time, +
 ALU to Perform a 32-bit Add +
 Data Memory Access Time +
 Stable Time for Register File Write

Clk

5

Rw Ra Rb
32 32-bit
Registers

Rd
A

L
U

Clk

Data
In

Data
Address Ideal

Data
Memory

Instruction

Instruction
Address

Ideal
Instruction

Memory

C
lk

PC

5
Rs

5
Rt

1
6

Imm

32

32
3232
A

B

N
ex

t A
dd

re
ss

• This affects
how fast you
can clock your
PC

CS 61C L11 Floating Point (48) A Carle, Summer 2006 © UCB

Recap: Meaning of the Control
Signals• ExtOp: “zero”, “sign”

• ALUsrc: 0 ⇒ regB;
1 ⇒ immed

• ALUctr: “add”, “sub”, “or”

° MemWr: 1 ⇒ write memory
° MemtoReg: 0 ⇒ ALU; 1 ⇒ Mem
° RegDst: 0 ⇒ “rt”; 1 ⇒ “rd”
° RegWr: 1 ⇒ write register

32

ALUctr

Clk

busW

RegWr

32
32

busA

32
busB

55 5

Rw Ra Rb
32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst

E
xtender

M
ux

3216imm16

ALUSrcExtOp

M
ux

MemtoReg

Clk

Data In
WrEn32 Adr

Data
Memory

MemWr

A
L

U

Equal

0

1

0

1

01

=

CS 61C L11 Floating Point (49) A Carle, Summer 2006 © UCB

A Summary of the Control Signals

add sub ori lw sw beq jump
RegDst
ALUSrc
MemtoReg
RegWrite
MemWrite
nPCsel
Jump
ExtOp
ALUctr<2:0>

1
0
0
1
0
0
0
x

Add

1
0
0
1
0
0
0
x

Subtract

0
1
0
1
0
0
0
0

Or

0
1
1
1
0
0
0
1

Add

x
1
x
0
1
0
0
1

Add

x
0
x
0
0
1
0
x

Subtract

x
x
x
0
0
0
1
x

xxx

op target address

op rs rt rd shamt funct
061116212631

op rs rt immediate

R-type

I-type

J-type

add, sub

ori, lw, sw, beq

jump

func
op 00 0000 00 0000 00 1101 10 0011 10 1011 00 0100 00 0010Appendix A

10 0000See 10 0010 We Don’t Care :-)

CS 61C L11 Floating Point (50) A Carle, Summer 2006 © UCB

Sequential Laundry

• Sequential laundry takes
8 hours for 4 loads

T
a
s
k

O
r
d
e
r

B

C
D

A
30

Time
3030 3030 30 3030 3030 3030 3030 3030

6 PM 7 8 9 10 11 12 1 2 AM

CS 61C L11 Floating Point (51) A Carle, Summer 2006 © UCB

General
Definitions
• Latency: time to completely execute a
certain task

• for example, time to read a sector from
disk is disk access time or disk latency

• Instruction latency is time from when
instruction starts to time when it finishes.

• Throughput: amount of work that can
be done over a period of time

CS 61C L11 Floating Point (52) A Carle, Summer 2006 © UCB

Pipelining Lessons
(1/2) • Pipelining doesn’t help

latency of single task, it
helps throughput of
entire workload

• Multiple tasks
operating
simultaneously using
different resources

• Potential speedup =
Number pipe stages

• Time to “fill” pipeline
and time to “drain” it
reduces speedup:
2.3X v. 4X in this
example

6 PM 7 8 9
Time

B
C

D

A
303030 3030 30 30

T
a
s
k

O
r
d
e
r

CS 61C L11 Floating Point (53) A Carle, Summer 2006 © UCB

Pipelining Lessons
(2/2) • Suppose new

Washer takes 20
minutes, new
Stasher takes 20
minutes. How
much faster is
pipeline?

• Pipeline rate
limited by slowest
pipeline stage

• Unbalanced
lengths of pipe
stages also
reduces speedup

6 PM 7 8 9
Time

B
C

D

A
303030 3030 30 30

T
a
s
k

O
r
d
e
r

CS 61C L11 Floating Point (54) A Carle, Summer 2006 © UCB

Steps in Executing
MIPS
1) IFetch: Fetch Instruction, Increment PC

2) Decode Instruction, Read Registers

3) Execute:
 Mem-ref: Calculate Address
 Arith-log: Perform Operation

4) Memory:
 Load: Read Data from Memory
 Store: Write Data to Memory

5) Write Back: Write Data to Register

CS 61C L11 Floating Point (55) A Carle, Summer 2006 © UCB

Graphical Pipeline
Representation

I
n
s
t
r.

O
r
d
e
r

Load

Add

Store

Sub

Or

 I$

Time (clock cycles)

 I$

A
LU

Reg

Reg

 I$

 D$

A
LU

A
LU

Reg

 D$

Reg

 I$

 D$

Reg
A

LU

Reg Reg

Reg

 D$

Reg

 D$

A
LU

(In Reg, right half highlight read, left half write)

Reg

 I$

CS 61C L11 Floating Point (56) A Carle, Summer 2006 © UCB

Things to
Remember• Optimal Pipeline

• Each stage is executing part of an
instruction each clock cycle.

• One instruction finishes during each
clock cycle.

• On average, executes far more quickly.

• What makes this work?
• Similarities between instructions allow us
to use same stages for all instructions
(generally).

• Each stage takes about the same amount
of time as all others: little wasted time.

CS 61C L11 Floating Point (57) A Carle, Summer 2006 © UCB

Pipeline Hazard: Matching socks in later load

A depends on D; stall since folder tied up

T
a
s
k

O
r
d
e
r

B
C

D

A

E

F

bubble

12 2 AM6 PM 7 8 9 10 11 1

Time303030 3030 3030

CS 61C L11 Floating Point (58) A Carle, Summer 2006 © UCB

Problems for Computers

• Limits to pipelining: Hazards prevent
next instruction from executing during
its designated clock cycle

• Structural hazards: HW cannot support
this combination of instructions (single
person to fold and put clothes away)

• Control hazards: Pipelining of branches &
other instructions stall the pipeline until
the hazard; “bubbles” in the pipeline

• Data hazards: Instruction depends on
result of prior instruction still in the
pipeline (missing sock)

CS 61C L11 Floating Point (59) A Carle, Summer 2006 © UCB

Structural Hazard #1: Single Memory
(1/2)

Read same memory twice in same clock cycle

 I$

Load

Instr 1

Instr 2

Instr 3

Instr 4
A

LU I$ Reg D$ Reg

A
LU I$ Reg D$ Reg

A
LU I$ Reg D$ Reg

A
LUReg D$ Reg

A
LU I$ Reg D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

CS 61C L11 Floating Point (60) A Carle, Summer 2006 © UCB

Structural Hazard #1: Single Memory
(2/2)
• Solution:

• infeasible and inefficient to create
second memory

• (We’ll learn about this more next week)
• so simulate this by having two Level 1
Caches (a temporary smaller [of usually
most recently used] copy of memory)

• have both an L1 Instruction Cache and
an L1 Data Cache

• requires complex hardware to control
when both caches miss!

CS 61C L11 Floating Point (61) A Carle, Summer 2006 © UCB

Structural Hazard #2: Registers
(1/2)

Can’t read and write to registers simultaneously

 I$

sw
Instr 1

Instr 2

Instr 3

Instr 4
A

LU I$ Reg D$ Reg

A
LU I$ Reg D$ Reg

A
LU I$ Reg D$ Reg

A
LUReg D$ Reg

A
LU I$ Reg D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

CS 61C L11 Floating Point (62) A Carle, Summer 2006 © UCB

Structural Hazard #2: Registers
(2/2)
• Fact: Register access is VERY fast:
takes less than half the time of ALU
stage

• Solution: introduce convention
• always Write to Registers during first half
of each clock cycle

• always Read from Registers during
second half of each clock cycle (easy
when async)

• Result: can perform Read and Write
during same clock cycle

CS 61C L11 Floating Point (63) A Carle, Summer 2006 © UCB

Control Hazard: Branching

Where do we do the compare for the branch?

 I$

beq
Instr 1

Instr 2

Instr 3

Instr 4
A

LU I$ Reg D$ Reg

A
LU I$ Reg D$ Reg

A
LU I$ Reg D$ Reg

A
LUReg D$ Reg

A
LU I$ Reg D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

CS 61C L11 Floating Point (64) A Carle, Summer 2006 © UCB

Control Hazard: Branching

• We put branch decision-making
hardware in ALU stage

• therefore two more instructions after the
branch will always be fetched, whether or
not the branch is taken

• Desired functionality of a branch
• if we do not take the branch, don’t waste
any time and continue executing
normally

• if we take the branch, don’t execute any
instructions after the branch, just go to
the desired label

CS 61C L11 Floating Point (65) A Carle, Summer 2006 © UCB

Control Hazard: Branching

• Optimization #1:
• move asynchronous comparator up to
Stage 2

• as soon as instruction is decoded
(Opcode identifies is as a branch),
immediately make a decision and set the
value of the PC (if necessary)

• Benefit: since branch is complete in
Stage 2, only one unnecessary
instruction is fetched, so only one no-op
is needed

• Side Note: This means that branches are
idle in Stages 3, 4 and 5.

CS 61C L11 Floating Point (66) A Carle, Summer 2006 © UCB

Control Hazard: Branching

• Optimization #2: Redefine branches
• Old definition: if we take the branch,
none of the instructions after the branch
get executed by accident

• New definition: whether or not we take
the branch, the single instruction
immediately following the branch gets
executed (called the branch-delay slot)

CS 61C L11 Floating Point (67) A Carle, Summer 2006 © UCB

 $t0 not written back in time!

Data Hazards

sub $t4,$t0,$t3
A

LUI$ Reg D$ Reg

and $t5,$t0,$t6

A
LUI$ Reg D$ Reg

or $t7,$t0,$t8 I$

A
LUReg D$ Reg

xor $t9,$t0,$t10

A
LUI$ Reg D$ Reg

add $t0,$t1,$t2
IF ID/RF EX ME

M
WBA

LUI$ Reg D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

CS 61C L11 Floating Point (68) A Carle, Summer 2006 © UCB

Fix by Forwarding result as soon as we have it
to where we need it:

Data Hazard Solution:
Forwarding

sub $t4,$t0,$t3

A
LUI$ Reg D$ Reg

and $t5,$t0,$t6
A

LUI$ Reg D$ Reg

or $t7,$t0,$t8 * I$

A
LUReg D$ Reg

xor $t9,$t0,$t10

A
LUI$ Reg D$ Reg

add $t0,$t1,$t2
IF ID/RF EX ME

M
WBA

LUI$ Reg D$ Reg

 * “or” hazard solved by register hardware

CS 61C L11 Floating Point (69) A Carle, Summer 2006 © UCB

• Hardware must stall pipeline
• Called “interlock”

Data Hazard: Loads

sub $t3,$t0,$t2
A

LUI$ Reg D$ Regbub
ble

and $t5,$t0,$t4

A
LUI$ Reg D$ Regbub

ble

or $t7,$t0,$t6 I$

A
LUReg D$bub
ble

lw $t0, 0($t1)
IF ID/RF EX ME

M
WBA

LUI$ Reg D$ Reg

CS 61C L11 Floating Point (70) A Carle, Summer 2006 © UCB

Data Hazard: Loads

• Instruction slot after a load is called
“load delay slot”

• If that instruction uses the result of the
load, then the hardware interlock will
stall it for one cycle.

• If the compiler puts an unrelated
instruction in that slot, then no stall

• Letting the hardware stall the
instruction in the delay slot is equivalent
to putting a nop in the slot (except the
latter uses more code space)

CS 61C L11 Floating Point (71) A Carle, Summer 2006 © UCB

C.f. Branch Delay vs. Load
Delay
• Load Delay occurs only if necessary
(dependent instructions).

• Branch Delay always happens (part of
the ISA).

• Why not have Branch Delay
interlocked?

• Answer: Interlocks only work if you can
detect hazard ahead of time. By the time
we detect a branch, we already need its
value … hence no interlock is possible!

CS 61C L11 Floating Point (72) A Carle, Summer 2006 © UCB

Data Stationary
Control• The Main Control generates the control signals during

Reg/Dec
• Control signals for Exec (ExtOp, ALUSrc, ...) are used 1 cycle later
• Control signals for Mem (MemWr Branch) are used 2 cycles later
• Control signals for Wr (MemtoReg MemWr) are used 3 cycles later

IF/ID
 R

egister

ID
/Ex R

egister

Ex/M
em

 R
egister

M
em

/W
r R

egister

Reg/Dec Exec Mem

ExtOp

ALUOp
RegDst

ALUSrc

Branch
MemWr

MemtoReg
RegWr

Main
Control

ExtOp

ALUOp
RegDst

ALUSrc

MemtoReg
RegWr

MemtoReg
RegWr

MemtoReg
RegWr

Branch
MemWr

Branch
MemWr

Wr

CS 61C L11 Floating Point (73) A Carle, Summer 2006 © UCB

Fix by Forwarding result as soon as we have it
to where we need it:

Review:
Forwarding

sub $t4,$t0,$t3

A
LUI$ Reg D$ Reg

and $t5,$t0,$t6
A

LUI$ Reg D$ Reg

or $t7,$t0,$t8 * I$

A
LUReg D$ Reg

xor $t9,$t0,$t10

A
LUI$ Reg D$ Reg

add $t0,$t1,$t2
IF ID/RF EX ME

M
WBA

LUI$ Reg D$ Reg

 * “or” hazard solved by register hardware

CS 61C L11 Floating Point (74) A Carle, Summer 2006 © UCB

Forwarding
Muxes • Detect nearest

valid write op
operand
register and
forward into op
latches,
bypassing
remainder of
the pipe

• Increase muxes to
add paths from
pipeline registers

• Data Forwarding
= Data Bypassing

npc

I mem
Regs

B

alu

S

D mem

m

IAU

PC

Regs

A im op rwn

op rwn

op rwn

op rw rs rt
Forward

mux

