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Scientific Notation (in 
Binary)

1.0two x 2-1

radix (base)“binary point”

exponent

• Normalized mantissa always has exactly 
one “1” before the point.

• Computer arithmetic that supports it called 
floating point, because it represents 
numbers where binary point is not fixed, as 
it is for integers

• Declare such variable in C as float

mantissa
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Floating Point Representation

• Normal format: +1.xxxxxxxxxxtwo*2yyyytwo

• Multiple of Word Size (32 bits):

031
S Exponent
30 23 22

Significand
1 bit 8 bits 23 bits

• S represents Sign

• Exponent represents y’s

• Significand represents x’s
Represent numbers as small as 
2.0 x 10-38 to as large as 2.0 x 1038 
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Double Precision Fl. Pt. 
Representation• Next Multiple of Word Size (64 bits)

• Double Precision (vs. Single Precision)
• C variable declared as double
• Represent numbers almost as small as 
2.0 x 10-308 to almost as large as 2.0 x 10308 

• But primary advantage is greater accuracy 
due to larger significand

031
S Exponent

30 20 19
Significand

1 bit 11 bits 20 bits
Significand (cont’d)

32 bits
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IEEE 754 Floating Point Standard
• Called Biased Notation, where bias is 
number subtracted to get real number
• IEEE 754 uses bias of 127 for single prec.
• Subtract 127 from Exponent field to get actual 
value for exponent

• Summary (single precision):
031

S Exponent
30 23 22

Significand
1 bit 8 bits 23 bits
• (-1)S x (1 + Significand) x 2(Exponent-127)

• Double precision identical, except with 
exponent bias of 1023
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Representation for ± 
∞
• In FP, divide by 0 should produce ± , ∞
not overflow.

• Why?
• OK to do further computations with  ∞
E.g.,  X/0  >  Y may be a valid comparison

• Ask math majors

• IEEE 754 represents ± ∞
• Most positive exponent reserved for ∞
• Significands all zeroes
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Representation for 
0• Represent 0?

• exponent all zeroes
• significand all zeroes
• What about sign?
•+0: 0 00000000 00000000000000000000000
•-0: 1 00000000 00000000000000000000000

• Why two zeroes?
• Helps in some limit comparisons
• Ask math majors
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Representation for Not a 
Number
• What is sqrt(-4.0)or 0/0?

• If  not an error, these shouldn’t be either.∞
• Called Not a Number (NaN)
• Exponent = 255, Significand nonzero

• Why is this useful?
• Hope NaNs help with debugging?
• They contaminate: op(NaN,X) = NaN
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Representation for Denorms 
(1/2)• Problem: There’s a gap among 

representable FP numbers around 0
• Smallest representable pos num:

a = 1.0… 2 * 2-126 = 2-126

• Second smallest representable pos num:
b = 1.000……1 2 * 2-126 = 2-126 + 2-149

a - 0 = 2-126

b - a = 2-149

b

a0
+-

Gaps!

Normalization 
and implicit 1
is to blame!
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Representation for Denorms 
(2/2)
• Solution:

• We still haven’t used Exponent = 0, 
Significand nonzero

• Denormalized number: no leading 1, implicit 
exponent = -126.

• Smallest representable pos num:
a = 2-149 

• Second smallest representable pos num:
b = 2-148

0
+-
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IEEE Four Rounding 
Modes
• Round towards + ∞

• ALWAYS round “up”: 2.1 ⇒ 3, -2.1 ⇒ -2

• Round towards - ∞
• ALWAYS round “down”: 1.9 ⇒ 1, -1.9 ⇒ -2

• Truncate
• Just drop the last bits (round towards 0)

• Round to (nearest) even (default)
• Normal rounding, almost: 2.5 ⇒ 2, 3.5 ⇒ 4
• Like you learned in grade school
• Insures fairness on calculation
• Half the time we round up, other half down
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Integer Multiplication

• Example:
• in C: a = b * c;
• in MIPS:

- let b be $s2; let c be $s3; and let a be $s0 
and $s1 (since it may be up to 64 bits)

mult $s2,$s3 # b*c    mfhi $s0 # upper half of              # product into $s0mflo $s1 # lower half of              # product into $s1
• Note: Often, we only care about the 
lower half of the product.
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Integer Division

• Syntax of Division (signed):
•div register1, register2
• Divides 32-bit register 1 by 32-bit register 2: 
• puts remainder of division in hi, quotient in lo

• Implements C division (/) and modulo (%)
• Example in C: a = c / d;b = c % d;
• in MIPS: a↔$s0;b↔$s1;c↔$s2;d↔$s3

div  $s2,$s3 # lo=c/d, hi=c%d    mflo $s0 # get quotientmfhi $s1 # get remainder
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Unsigned Instructions & 
Overflow
• MIPS also has versions of mult, div 
for unsigned operands:

multu
divu

• Determines whether or not the product 
and quotient are changed if the operands 
are signed or unsigned.

• MIPS does not check overflow on ANY 
signed/unsigned multiply, divide instr

• Up to the software to check hi 
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FP Addition & 
Subtraction
• Much more difficult than with integers
(can’t just add significands)

• How do we do it?
• De-normalize to match larger exponent
• Add significands to get resulting one
• Normalize (& check for under/overflow)
• Round if needed (may need to renormalize)

• If signs , do a subtract. (Subtract similar)≠
• If signs  for add (or = for sub), what’s ans ≠

sign?
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MIPS Floating Point Architecture

• Separate floating point instructions:
• Single Precision: add.s, sub.s, mul.s, div.s
• Double Precision: add.d, sub.d, mul.d, div.d

• These are far more complicated than 
their integer counterparts

• Can take much longer to execute
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MIPS Floating Point Architecture

• 1990 Solution: Make a completely 
separate chip that handles only FP.

• Coprocessor 1: FP chip
• contains 32 32-bit registers: $f0, $f1, …
• most of the registers specified in .s and .d instruction refer to this set
• separate load and store: lwc1 and swc1
(“load word coprocessor 1”, “store …”)

• Double Precision: by convention, 
even/odd pair contain one DP FP number: $f0/$f1, $f2/$f3, … , $f30/$f31

- Even register is the name
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FP/Math 
Summary
• Reserve exponents, significands:

Exponent Significand Object
0 0 0
0 nonzero Denorm
1-254 anything +/- fl. pt. #
255 0 +/- ∞
255 nonzero NaN

• Integer mult, div uses hi, lo regs
•mfhi and mflo copies out.

• Four rounding modes (to even default)

• MIPS FL ops complicated, expensive
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True Assembly Language

• Pseudoinstruction: A MIPS instruction 
that doesn’t turn directly into a machine 
language instruction, but into other 
MIPS instructions

• What happens with pseudoinstructions?
• They’re broken up by the assembler into 
several “real” MIPS instructions.

• But what is a “real” MIPS instruction? 
Answer in a few slides

• First some examples
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Example 
Pseudoinstructions

• Register Move
movereg2,reg1
Expands to:
add reg2,$zero,reg1

• Load Immediate
li reg,value
If value fits in 16 bits:
addireg,$zero,value
else:
lui reg,upper 16 bits of value
ori reg,$zero,lower 16 bits
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True Assembly Language

• Problem:
• When breaking up a pseudoinstruction, the 
assembler may need to use an extra reg.

• If it uses any regular register, it’ll overwrite 
whatever the program has put into it.

• Solution:
• Reserve a register ($1, called $at for 
“assembler temporary”) that assembler will 
use to break up pseudo-instructions.

• Since the assembler may use this at any 
time, it’s not safe to code with it.
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Steps to Starting a 
Program C program: foo.c

Compiler

Assembly program: foo.s
Assembler

Linker

Executable(mach lang pgm): a.out
Loader

Memory

Object(mach lang module): foo.o
lib.o
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Compile
r
• Input: High-Level Language Code 
(e.g., C, Java such as foo.c)

• Output: Assembly Language Code
(e.g., foo.s for MIPS)

• Note: Output may contain 
pseudoinstructions

• Pseudoinstructions: instructions that 
assembler understands but not in 
machine (last lecture) For example:

•  mov $s1,$s2 ⇒ or $s1,$s2,$zero
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Assemble
r
• Input: MAL Assembly Language Code
(e.g., foo.s for MIPS)

• Output: Object Code, information tables
(e.g., foo.o for MIPS)

• Replace Pseudoinstructions

• Produce Machine Language

• Creates Object File
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Producing Machine Language

• Constraint on Assembler:
• The object file output (foo.o) may be only 
one of many object files in the final 
executable:

- C: #include “my_helpers.h”
- C: #include <stdio.h> 

• Consequences: 
• Object files won’t know their base 
addresses until they are linked/loaded!

• References to addresses will have to be 
adjusted in later stages
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Object File 
Format
• object file header: size and position of 
the other pieces of the object file

• text segment: the machine code

• data segment: binary representation 
of the data in the source file

• relocation information: identifies lines 
of code that need to be “handled”

• symbol table: list of this file’s labels 
and data that can be referenced

• debugging information
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Link Editor/Linker

.o file 1
text 1

data 1

info 1

.o file 2
text 2

data 2

info 2

Linker

a.out
Relocated text 1

Relocated text 2

Relocated data 1

Relocated data 2
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Link Editor/Linker

• Step 1: Take text segment from each 
.o file and put them together.

• Step 2: Take data segment from each 
.o file, put them together, and 
concatenate this onto end of text 
segments.

• Step 3: Resolve References
• Go through Relocation Table and handle 
each entry

• That is, fill in all absolute addresses
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Loader

• Input: Executable Code
(e.g., a.out for MIPS)

• Output: (program is run)

• Executable files are stored on disk.

• When one is run, loader’s job is to 
load it into memory and start it 
running.

• In reality, loader is the operating 
system (OS) 

• loading is one of the OS tasks
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True Assembly Language

• MAL (MIPS Assembly Language): the set 
of instructions that a programmer may 
use to code in MIPS; this includes 
pseudoinstructions

• TAL (True Assembly Language): set of 
instructions that can actually get 
translated into a single machine 
language instruction (32-bit binary 
string)

• A program must be converted from MAL 
into TAL before translation into 1s & 0s.
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Logic Gates
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Logic Gates
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Boolean Algebra

y = a • b + a • c + b • c

y = ab + ac + bc
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Laws of Boolean Algebra
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Register Details…What’s in it 
anyway?

• n instances of a “Flip-Flop”, called that 
because the output flips and flops betw. 0,1 

• D is “data”

• Q is “output”

• Also called “d-q Flip-Flop”,“d-type Flip-Flop”
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What’s the timing of a Flip-flop?

• Edge-triggered D-type flip-flop
• This one is “positive edge-triggered”

• “On the rising edge of the clock, the input d 
is sampled and transferred to the output.  At 
all other times, the input d is ignored.”



CS 61C L11 Floating Point (37) A Carle, Summer 2006 © UCB

Finite State Machines 
Introduction
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Finite State Machine Example: 3 
ones…

Draw the FSM…

100110
000010
010101
000001
001100
000000

OutputNSInputPS



CS 61C L11 Floating Point (39) A Carle, Summer 2006 © UCB

Hardware Implementation of 
FSM

+

= ?
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Step 1: Abstract 
Implementation

Data
Out

Clk

5

Rw Ra Rb
32 32-bit
Registers

Rd

A
L

U

Clk

Data 
In

Data
Address Ideal

Data
Memory

Instruction

Instruction
Address

Ideal
Instruction

Memory

C
lk

PC

5
Rs

5
Rt

32

32
3232
A

B

N
ex

t A
dd

re
ss

Control

Datapath

Control SignalsConditions
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Combinational Logic: More Elements

•Adder

•MUX

•ALU

32

32

A

B
32 Sum

Carry

32

32

A

B
32 Result

OP

32A

B 32

Y32

Select

A
dder

M
U

X
A

LU

CarryIn
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Storage Element: Idealized 
Memory

• Memory (idealized)
• One input bus: Data In
• One output bus: Data Out

• Memory word is selected by:
• Address selects the word to put on Data Out
• Write Enable = 1: address selects the memory

word to be written via the Data In bus
• Clock input (CLK) 

• The CLK input is a factor ONLY during write 
operation

• During read operation, behaves  as a 
combinational logic block:

- Address valid => Data Out valid after “access 
time.”

Clk

Data In

Write Enable

32 32
DataOut

Address
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Storage Element: Register 
File• Register File consists of 32 registers:

• Two 32-bit output busses:
    busA and busB
• One 32-bit input bus: busW

• Register is selected by:
• RA (number) selects the register to put on busA (data)
• RB (number) selects the register to put on busB (data)
• RW (number) selects the register to be  written

via busW (data) when Write Enable is 1
• Clock input (CLK) 

• The CLK input is a factor ONLY during write operation
• During read operation, behaves as a combinational 

logic block:
- RA or RB valid => busA or busB valid after “access time.”

Clk

busW

Write Enable

32
32

busA

32
busB

5 5 5
RWRA RB

32 32-bit
Registers
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Clocking 
Methodology

• Storage elements clocked by same edge
• Being physical devices, flip-flops (FF) and 
combinational logic have some delays 
• Gates: delay from input change to output change 
• Signals at FF D input must be stable before active clock 

edge to allow signal to travel within the FF, and we have 
the usual clock-to-Q delay

• “Critical path” (longest path through logic) 
determines length of clock period

Clk

.

.

.

.

.

.

.

.

.

.

.

.
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Register-Register Timing: One complete 
cycle

32
Result

ALUctr

Clk

busW

RegWr

32
32

busA

32
busB

5 5 5

Rw Ra Rb
32  32-bit
Registers

Rs RtRd

A
LU

Clk

PC
Rs, Rt, Rd,
Op, Func

ALUctr

Instruction Memory Access Time

Old Value New Value

RegWr Old Value New Value

Delay through Control Logic

busA, B
Register File Access 
TimeOld Value New Value

busW
ALU Delay

Old Value New Value

Old Value New Value

New ValueOld Value

Register Write
Occurs Here
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Putting it All Together:A Single Cycle 
Datapath

im
m

16

32

ALUctr

Clk

busW

RegWr

32
32

busA

32
busB

55 5

Rw Ra Rb
32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst

E
xtender

M
ux

3216imm16

ALUSrcExtOp

M
ux

MemtoReg

Clk

Data In
WrEn32 Adr

Data
Memory

MemWr
A

L
U

Equal

Instruction<31:0>

0

1

0

1

01

<21:25>

<16:20>

<11:15>

<0:15>

Imm16RdRtRs

=

A
dder

A
dder

PC

Clk

00M
ux

4

nPC_sel

PC
 E

xt

Adr

Inst
Memory
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An Abstract View of the Critical 
Path Critical Path (Load Operation) = 

    Delay clock through PC (FFs) +
    Instruction Memory’s Access Time +
    Register File’s Access Time, +
    ALU to Perform a 32-bit Add +
    Data Memory Access Time +
    Stable Time for Register File Write

Clk

5

Rw Ra Rb
32 32-bit
Registers

Rd
A

L
U

Clk

Data 
In

Data
Address Ideal

Data
Memory

Instruction

Instruction
Address

Ideal
Instruction

Memory

C
lk

PC

5
Rs

5
Rt

1
6

Imm

32

32
3232
A

B

N
ex

t A
dd

re
ss

• This affects 
how fast you 
can clock your 
PC
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Recap: Meaning of the Control 
Signals• ExtOp: “zero”, “sign”

• ALUsrc: 0 ⇒ regB; 
1 ⇒ immed

• ALUctr: “add”, “sub”, “or”

° MemWr: 1 ⇒ write memory
° MemtoReg: 0 ⇒ ALU; 1 ⇒ Mem
° RegDst: 0 ⇒ “rt”; 1 ⇒ “rd”
° RegWr: 1 ⇒ write register

32

ALUctr

Clk

busW

RegWr

32
32

busA

32
busB

55 5

Rw Ra Rb
32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst

E
xtender

M
ux

3216imm16

ALUSrcExtOp

M
ux

MemtoReg

Clk

Data In
WrEn32 Adr

Data
Memory

MemWr

A
L

U

Equal

0

1

0

1

01

=
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A Summary of the Control Signals

add sub ori lw sw beq jump
RegDst
ALUSrc
MemtoReg
RegWrite
MemWrite
nPCsel
Jump
ExtOp
ALUctr<2:0>

1
0
0
1
0
0
0
x

Add

1
0
0
1
0
0
0
x

Subtract

0
1
0
1
0
0
0
0

Or

0
1
1
1
0
0
0
1

Add

x
1
x
0
1
0
0
1

Add

x
0
x
0
0
1
0
x

Subtract

x
x
x
0
0
0
1
x

xxx

op target address

op rs rt rd shamt funct
061116212631

op rs rt immediate

R-type

I-type

J-type

add, sub

ori, lw, sw, beq

jump

func
op 00 0000 00 0000 00 1101 10 0011 10 1011 00 0100 00 0010Appendix A

10 0000See 10 0010 We Don’t Care :-)
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Sequential Laundry

• Sequential laundry takes 
8 hours for 4 loads

T
a
s
k

O
r
d
e
r

B

C
D

A
30

Time
3030 3030 30 3030 3030 3030 3030 3030

6 PM 7 8 9 10 11 12 1 2 AM
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General 
Definitions
• Latency: time to completely execute a 
certain task

• for example, time to read a sector from 
disk is disk access time or disk latency

• Instruction latency is time from when 
instruction starts to time when it finishes.

• Throughput: amount of work that can 
be done over a period of time
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Pipelining Lessons 
(1/2) • Pipelining doesn’t help 

latency of single task, it 
helps throughput of 
entire workload

• Multiple tasks 
operating 
simultaneously using 
different resources

• Potential speedup = 
Number pipe stages

• Time to “fill” pipeline 
and time to “drain” it 
reduces speedup:
2.3X v. 4X in this 
example

6 PM 7 8 9
Time

B
C

D

A
303030 3030 30 30

T
a
s
k

O
r
d
e
r
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Pipelining Lessons 
(2/2) • Suppose new 

Washer takes 20 
minutes, new 
Stasher takes 20 
minutes. How 
much faster is 
pipeline?

• Pipeline rate 
limited by slowest 
pipeline stage

• Unbalanced 
lengths of pipe 
stages also 
reduces speedup

6 PM 7 8 9
Time

B
C

D

A
303030 3030 30 30

T
a
s
k

O
r
d
e
r
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Steps in Executing 
MIPS
1) IFetch: Fetch Instruction, Increment PC

2) Decode Instruction, Read Registers

3) Execute:
  Mem-ref: Calculate Address
  Arith-log: Perform Operation

4) Memory: 
  Load: Read Data from Memory
  Store: Write Data to Memory

5) Write Back: Write Data to Register
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Graphical Pipeline 
Representation

I
n
s
t
r.

O
r
d
e
r

Load

Add

Store

Sub

Or

  I$

Time (clock cycles)

  I$

A
LU

Reg

Reg

  I$

  D$

A
LU

A
LU

Reg

  D$

Reg

  I$

  D$

Reg
A

LU

Reg Reg

Reg

  D$

Reg

  D$

A
LU

(In Reg, right half highlight read, left half write)

Reg

  I$ 
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Things to 
Remember• Optimal Pipeline

• Each stage is executing part of an 
instruction each clock cycle.

• One instruction finishes during each 
clock cycle.

• On average, executes far more quickly.

• What makes this work?
• Similarities between instructions allow us 
to use same stages for all instructions 
(generally).

• Each stage takes about the same amount 
of time as all others: little wasted time.
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Pipeline Hazard: Matching socks in later load

A depends on D; stall since folder tied up

T
a
s
k

O
r
d
e
r

B
C

D

A

E

F

bubble

12 2 AM6 PM 7 8 9 10 11 1

Time303030 3030 3030
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Problems for Computers

• Limits to pipelining: Hazards prevent 
next instruction from executing during 
its designated clock cycle

• Structural hazards: HW cannot support 
this combination of instructions (single 
person to fold and put clothes away)

• Control hazards: Pipelining of branches & 
other instructions stall the pipeline until 
the hazard; “bubbles” in the pipeline

• Data hazards: Instruction depends on 
result of prior instruction still in the 
pipeline (missing sock)
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Structural Hazard #1: Single Memory 
(1/2)

Read same memory twice in same clock cycle

  I$

Load

Instr 1

Instr 2

Instr 3

Instr 4
A

LU  I$ Reg   D$ Reg

A
LU  I$ Reg   D$ Reg

A
LU  I$ Reg   D$ Reg

A
LUReg   D$ Reg

A
LU  I$ Reg   D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)
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Structural Hazard #1: Single Memory 
(2/2)
• Solution:

• infeasible and inefficient to create 
second memory

• (We’ll learn about this more next week)
• so simulate this by having two Level 1 
Caches (a temporary smaller [of usually 
most recently used] copy of memory)

• have both an L1 Instruction Cache and 
an L1 Data Cache

• requires complex hardware to control 
when both caches miss!
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Structural Hazard #2: Registers 
(1/2)

Can’t read and write to registers simultaneously

  I$

sw
Instr 1

Instr 2

Instr 3

Instr 4
A

LU  I$ Reg   D$ Reg

A
LU  I$ Reg   D$ Reg

A
LU  I$ Reg   D$ Reg

A
LUReg   D$ Reg

A
LU  I$ Reg   D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)
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Structural Hazard #2: Registers 
(2/2)
• Fact: Register access is VERY fast: 
takes less than half the time of ALU 
stage

• Solution: introduce convention
• always Write to Registers during first half 
of each clock cycle

• always Read from Registers during 
second half of each clock cycle (easy 
when async)

• Result: can perform Read and Write 
during same clock cycle
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Control Hazard: Branching

Where do we do the compare for the branch?

  I$

beq
Instr 1

Instr 2

Instr 3

Instr 4
A

LU  I$ Reg   D$ Reg

A
LU  I$ Reg   D$ Reg

A
LU  I$ Reg   D$ Reg

A
LUReg   D$ Reg

A
LU  I$ Reg   D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)
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Control Hazard: Branching

• We put branch decision-making 
hardware in ALU stage

• therefore two more instructions after the 
branch will always be fetched, whether or 
not the branch is taken

• Desired functionality of a branch
• if we do not take the branch, don’t waste 
any time and continue executing 
normally

• if we take the branch, don’t execute any 
instructions after the branch, just go to 
the desired label
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Control Hazard: Branching

• Optimization #1:
• move asynchronous comparator up to 
Stage 2

• as soon as instruction is decoded 
(Opcode identifies is as a branch), 
immediately make a decision and set the 
value of the PC (if necessary)

• Benefit: since branch is complete in 
Stage 2, only one unnecessary 
instruction is fetched, so only one no-op 
is needed

• Side Note: This means that branches are 
idle in Stages 3, 4 and 5.
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Control Hazard: Branching

• Optimization #2: Redefine branches
• Old definition: if we take the branch, 
none of the instructions after the branch 
get executed by accident

• New definition: whether or not we take 
the branch, the single instruction 
immediately following the branch gets 
executed (called the branch-delay slot)
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 $t0 not written back in time!

Data Hazards

sub $t4,$t0,$t3
A

LUI$ Reg  D$ Reg

and $t5,$t0,$t6

A
LUI$ Reg  D$ Reg

or   $t7,$t0,$t8 I$

A
LUReg  D$ Reg

xor $t9,$t0,$t10

A
LUI$ Reg  D$ Reg

add $t0,$t1,$t2
IF ID/RF EX ME

M
WBA

LUI$ Reg  D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)
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Fix by Forwarding result as soon as we have it 
to where we need it:

Data Hazard Solution: 
Forwarding

sub $t4,$t0,$t3

A
LUI$ Reg  D$ Reg

and $t5,$t0,$t6
A

LUI$ Reg  D$ Reg

or   $t7,$t0,$t8 * I$

A
LUReg  D$ Reg

xor $t9,$t0,$t10

A
LUI$ Reg  D$ Reg

add $t0,$t1,$t2
IF ID/RF EX ME

M
WBA

LUI$ Reg  D$ Reg

 * “or” hazard solved by register hardware
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• Hardware must stall pipeline
• Called “interlock”

Data Hazard: Loads

sub $t3,$t0,$t2
A

LUI$ Reg  D$ Regbub
ble

and $t5,$t0,$t4

A
LUI$ Reg  D$ Regbub

ble

or   $t7,$t0,$t6 I$

A
LUReg  D$bub
ble

lw $t0, 0($t1)
IF ID/RF EX ME

M
WBA

LUI$ Reg  D$ Reg
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Data Hazard: Loads

• Instruction slot after a load is called 
“load delay slot”

• If that instruction uses the result of the 
load, then the hardware interlock will 
stall it for one cycle.

• If the compiler puts an unrelated 
instruction in that slot, then no stall

• Letting the hardware stall the 
instruction in the delay slot is equivalent 
to putting a nop in the slot  (except the 
latter uses more code space)
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C.f. Branch Delay vs. Load 
Delay
• Load Delay occurs only if necessary 
(dependent instructions).

• Branch Delay always happens (part of 
the ISA).

• Why not have Branch Delay 
interlocked?

• Answer: Interlocks only work if you can 
detect hazard ahead of time. By the time 
we detect a branch, we already need its 
value … hence no interlock is possible!



CS 61C L11 Floating Point (72) A Carle, Summer 2006 © UCB

Data Stationary 
Control• The Main Control generates the control signals during 

Reg/Dec
• Control signals for Exec (ExtOp, ALUSrc, ...) are used 1 cycle later
• Control signals for Mem (MemWr Branch) are used 2 cycles later
• Control signals for Wr (MemtoReg MemWr) are used 3 cycles later

IF/ID
 R

egister

ID
/Ex R

egister

Ex/M
em

 R
egister

M
em

/W
r R

egister

Reg/Dec Exec Mem

ExtOp

ALUOp
RegDst

ALUSrc

Branch
MemWr

MemtoReg
RegWr

Main
Control

ExtOp

ALUOp
RegDst

ALUSrc

MemtoReg
RegWr

MemtoReg
RegWr

MemtoReg
RegWr

Branch
MemWr

Branch
MemWr

Wr
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Fix by Forwarding result as soon as we have it 
to where we need it:

Review: 
Forwarding

sub $t4,$t0,$t3

A
LUI$ Reg  D$ Reg

and $t5,$t0,$t6
A

LUI$ Reg  D$ Reg

or   $t7,$t0,$t8 * I$

A
LUReg  D$ Reg

xor $t9,$t0,$t10

A
LUI$ Reg  D$ Reg

add $t0,$t1,$t2
IF ID/RF EX ME

M
WBA

LUI$ Reg  D$ Reg

 * “or” hazard solved by register hardware
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Forwarding 
Muxes • Detect nearest 

valid write op 
operand 
register and 
forward into op 
latches, 
bypassing 
remainder of 
the pipe

• Increase muxes to 
add paths from 
pipeline registers

• Data Forwarding 
= Data Bypassing

npc

I mem
Regs

B

alu

S

D mem

m

IAU

PC

Regs

A im op rwn

op rwn

op rwn

op rw rs rt
Forward

mux


