Inst.eecs.berkeley.edu/~cs6lc

CS61C : Machine Structures

Lecture 2: Introduction To C

SECOND EDITION

THE

PROGRAMMING
LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

PRENTICE HALL SOFTWARE SERIES

2006-06-27

ﬂ CS 61C L2 Introduction to C (1) A Carle, Summer 2006 © UCB

2’s Complement Properties

* As with sign and magnitude,
leading 0s = positive, leading 1s =
negative

- 000000...xxx is20, 111111..xxxis <0
- except 1...1111 is -1, not -0 (as in sign & mag.)

*Only 1 Zero!

ﬂ CS 61C L2 Introduction to C (3) A Carle, Summer 2006 © UCB

2’s Complement Number “line”: N =35

00000 00001 .2N-1 non-

negatives

11111

« 2N-1 negatives
*ONne zero

e how manx
positives™

10001 10000 01111

ﬂ CS 61C L2 Introduction to C (4) A Carle, Summer 2006 © UCB

Two’s Complement Formula

« Can represent positive and negative numbers
in terms _of the bit value times a power of 2:

ds, x©+ dygx 230+ .. +d,x22+d,x2"+d,x 20

 Example: 1101,
= + 1x22 + 0x21 + 1x20°
= + 22+ 0+ 20
=-8+4+0+1
=.3+5

ﬂ CS 61C L2 Introduction to C (5) A Carle, Summer 2006 © UCB

Two’s Complement shortcut: Negation

-Chan?e every 0 to1 and 1 to 0 (invert or
complement), then add 1 to the result

* Proof*: Sum of number and its (one’s)
complement must be 111...111

However, 111...111,, .= 1.,
Let X’ = one’s complement representation of x
Thenx+ X’ =-1=>x+xX+1=0=>x"+1=-x

two

 Example: -3 to +3 to -3
x: 1111111111111 1111 1111 1111 1111 1101
X’: 0000 0000 0000 0000 0000 0000 0000 0010
+1: 0000 0000 0000 0000 0000 0000 0000 0011,

y: 1111 1111 1111 1111 1111 1111 1111 1100
11111 1111 1111 1111

two
two

: 1111 1111 111 11010
* Check out

CS 61C L2 Introduction to C (6) A Carle, Summer 2006 © UCB

Two’s comp. shortcut: Sign extension

e Convert 2’s complement number rep.
using n bits to more than n bits

. Simplg replicate the most significant bit
(sign bit) of smaller to fill new bits

»2’s comp. positive number has infinite Os
«2’s comp. negative number has infinite 1s

Binary representation hides leading bits;
sign extension restores some of them

-16-bit -4, to 32-bit:
1111 1111 1111 1100,
1111 1111 1111 1111 1111 1111 1111 1100,

CS 61C L2 Introduction to C (7) A Carle, Summer 2006 © UCB

What if too big?

 Binary bit patterns above are simply
{_’IeTpresentatives of numbers. Strictly speaking
ey are called “numerals”.

 Numbers really have an -« number of digits

« with almost all being same (00...0 or 11...1) except
for a few of the rightmost digits

* Just don’t normally show leading digits
* If result of add (or -, *, /) cannot be

represented by these rightmost HW bits,
overflow is said to have occurred.

00000 00001 00010 11110 11111

u
- Iu nsigned
-/
CS 61C L2 Introduction to C (8) A Carle, Summer 2006 © UCB

Number Summary

 We represent “things” in computers as
particular bit patterns: N bits = 2N

* Decimal for human calculations, binary for
computers, hex to write binary more easily

*1’s complement - mostly abandoned

00000 00001 ... 01111

—-
10000 ...1111011111

* 2’s complement universal in computing:
cannot avoid, so learn

00000 00001 ... 01111

—
10000 ... 1111011111

Overflow: numbers «; computers finite, errors!

CS 61C L2 Introduction to C (9) A Carle, Summer 2006 © UCB

Preview: Signed vs. Unsigned Variables

e Java just declares integers Int
* Uses two’s complement

 C has declaration 1nt also

* Declares variable as a signed integer
* Uses two’s complement

e Also, C declaration unsigned iInt

* Declares a unsigned integer

* Treats 32-bit number as unsigned
integer, so most significant bit is part of
Z the number, not a sign bit

CS 61C L2 Introduction to C (10) A Carle, Summer 2006 © UCB

BIG IDEA: Bits can represent anything!!

- REMEMBER: N digits in base B = BN values
e For binary in particular: N bits = 2N values

e Characters?

« 26 letters = 5 bits (2° = 32)

e upper/lower case + punctuation
= 7 bits (in 8) (“ASCII”)

» standard code to cover all the world | ¥+
languages = 16 bits (“Unicode”) . A

 Logical values?
0 = False, 1 = True

- colors ? Ex: |iiliin] SN SRS

locations / addresses? commands?

CS 61C L2 Introduction to C (12) A Carle, Summer 2006 © UCB

Example: Numbers represented in memory

11111

Oxdeadbeef 10110

A

00000

ﬂ CS 61C L2 Introduction to C (13)

*Memory is a place to
store bits

e Aword is a fixed
number of bits (eg, 32)
at an address

*Addresses are
naturally represented
_ascl:m5|gned numbers
in

A Carle, Summer 2006 © UCB

Disclaimer

* Important: You will not learn how to
fully code in C in these lectures!
You’ll still need your C reference for
this course.

 K&R is a great reference.
- But... check online for more sources.

« “JAVA in a Nutshell,” O’Reilly.
- Chapter 2, “How Java Differs from C”.

ﬂ CS 61C L2 Introduction to C (15) A Carle, Summer 2006 © UCB

Compilation : Overview

C compilers take C and convert it into
an architecture specific machine code
(string of 1s and 0s).

* Unlike Java which converts to
architecture independent bytecode.

 Unlike most Scheme environments which
interpret the code.

* Generally a 2 part process of compiling
.C files to .o files, then linking the .o files
into executables

Q CS 61C L2 Introduction to C (16) A Carle, Summer 2006 © UCB

Compilation : Advantages

* Great run-time performance: generally
much faster than Scheme or Java for
comparable code (because it
optimizes for a given architecture)

 OK compilation time: enhancements in
compilation procedure (Makefiles)
allow only modified files to be
recompiled

ﬂ CS 61C L2 Introduction to C (17) A Carle, Summer 2006 © UCB

Compilation : Disadvantages

 All compiled files (including the
executable) are architecture specific,
depending on both the CPU type and
the operating system.

 Executable must be rebuilt on each
new system.

e Called “porting your code” to a new
architecture.

* The “change—~compile—run [repeat]”
iteration cycle is slow

ﬂ CS 61C L2 Introduction to C (18) A Carle, Summer 2006 © UCB

C vs. Java™ Overview (1/2)

Java

* Object-oriented
(OOP)

e “Methods”

e Class libraries of
data structures

 Automatic
memory
management

ﬂ CS 61C L2 Introduction to C (19)

C

* No built-in object
abstraction. Data
separate from
methods.

e “Functions”

e C libraries are
lower-level

 Manual
memory
management

 Pointers

A Carle, Summer 2006 © UCB

C vs. Java™ Overview (2/2)

Java C
 High memory Low memory
overhead from overhead
class libraries
* Relatively Slow * Relatively Fast
* Arrays initialize e Arrays initialize
to zero to garbage
e Syntax: « Syntax:
printf

System.out.print

Q CS 61C L2 Introduction to C (20) A Carle, Summer 2006 © UCB

C Syntax: Variable Declarations

* Very similar to Java, but with a few minor
but' important differences

 All variable declarations must go before
meyka)re used (at the beginning of the
ock).

* A variable may be initialized in its
declaration.

 Examples of declarations:

ecorrect: {
int a =0, b =10;

Z eincorrect: for (int i = 0; i < 10; i++)

CS 61C L2 Introduction to C (21) A Carle, Summer 2006 © UCB

C Syntax: True or False?

 What evaluates to FALSE in C?
0 (integer)
* NULL (pointer: more on this later)
* no such thing as a Boolean

 What evaluates to TRUE in C?

e everything else...

* (same idea as in scheme: only #T is
false, everything else is true!)

ﬂ CS 61C L2 Introduction to C (22) A Carle, Summer 2006 © UCB

C syntax : flow control

Within a function, remarkably close to
Java constructs in methods (shows its
legacy) in terms of flow control

ei1f-else
eswitch

swhile and for
edo-while

ﬂ CS 61C L2 Introduction to C (23) A Carle, Summer 2006 © UCB

C Syntax: main

* To get the main function to accept
arguments, use this:

int main (int argc, char *argv|])

e What does this mean?

eargc will contain the number of strings
on the command line (the executable
counts as one, plus one for each
argument).

- Example: unix% sort myFile

eargyv is a pointer to an array containing
the arguments as strings (more on

pointers later).
ﬂ CS 61C L2 Introduction to C (24) A Carle, Summer 2006 © UCB

Administrivia

 First labs today (“lab is where the
learning happens™)

» Office hours are still being arranged

* Class Newsgroup
e ucb.class.cs61c

ﬂ CS 61C L2 Introduction to C (25) A Carle, Summer 2006 © UCB

Address vs. Value

e Consider memory to be a single huge
array:

* Each cell of the array has an address
associated with it.

e Each cell also stores some value.

* Don’t confuse the address referring to
a memory location with the value
stored in that location.

101 102 103 104 105 ...
23 42

ﬂ CS 61C L2 Introduction to C (26) A Carle, Summer 2006 © UCB

Pointers

* An address refers to a particular
me_mor%/ location. In other words, it
points to a memory location.

* Pointer: A variable that contains the
address of another variable.

Location (address) /_\
\» 101 102 103 104 105 ...
23 42 104

X y P
name f

ﬂ CS 61C L2 Introduction to C (27) A Carle, Summer 2006 © UCB

Pointers

e How to create a pointer:
& operator: get address of a variable

= > - ») ») Note the “*” gets used
Int p » X, P ' X ' 2 different ways in

this example. In the

declaration to indicate
f)
P : X 3 that p is going to be a

) 7‘ N\ pointer, and in the
p — &X, 3 printf to get the
P X value pointed to by p.
 How get a value pointed to?

* “dereference operator”: get value pointed to

printf(“p points to %d\n”’,*p);

ﬂ CS 61C L2 Introduction to C (28) A Carle, Summer 2006 © UCB

X = 3;

Pointers

 How to change a variable pointed to?
* Use dereference * operator on left of =

P

ﬂ CS 61C L2 Introduction to C (29)

4R E

7"\)(1 -

A Carle, Summer 2006 © UCB

Pointers and Parameter Passing

Java and C pass a parameter “by value”

e procedure/function gets a copy of the
parameter, so changing the copy cannot
change the original

void addOne (Int x) {
X = X + 1;

}

int y = 3;
addOne(y);
ey is still=3

ﬂ CS 61C L2 Introduction to C (30) A Carle, Summer 2006 © UCB

Pointers and Parameter Passing

 How to get a function to change a value?

void addOne (int *p) {
*p:*p+1;

}
int y = 3;
addOne(&y) ;

ey is how =4

Q CS 61C L2 Introduction to C (31) A Carle, Summer 2006 © UCB

Pointers

* Normally a pointer can only point to
one type (1nt, char, a struct, etc.).

evoild *is atype that can point to
anything (generic pointer)

* Use sparingly to help avoid program
bugs... and security issues... and a lot
of other bad things!

ﬂ CS 61C L2 Introduction to C (32) A Carle, Summer 2006 © UCB

Peer Instruction

* A proven method for increasing
student understanding

* The steps:
| ask you a question
* You silently contemplate your answer

- Here, we’re supposed to vote... I’'m working
on a mechanism to make that happen in this
room

 When | tell you to, talk to your neighbors
about your answer and settle on a new
answer as a group

- Here we should vote again. I'll probably just
sk someone random for their answer

CS 61C L2 Introduction to C (33) A Carle, Summer 2006 © UCB

And in conclusion...

 All declarations go at the beginning of
each function.

*Only 0 and NULL evaluate to FALSE.

 All data is in memory. Each memory
location has an address to use to refer
to it and a value stored In it.

e A pointer is a C version of the
address.

o * “follows” a pointer to its value
* & gets the address of a value

ﬂ CS 61C L2 Introduction to C (37) A Carle, Summer 2006 © UCB

