
CS 61C L03 C Arrays (1) A Carle, Summer 2006 © UCB

inst.eecs.berkeley.edu/~cs61c/
CS61C : Machine Structures
Lecture #3: C Pointers & Arrays

2006-06-28

Andy Carle

CS 61C L03 C Arrays (2) A Carle, Summer 2006 © UCB

Address vs. Value

• What good is a bunch of memory if you
can’t select parts of it?

• Each memory cell has an address
associated with it.

• Each cell also stores some value.

• Don’t confuse the address referring to
a memory location with the value
stored in that location.

23 42
101 102 103 104 105 ...

CS 61C L03 C Arrays (3) A Carle, Summer 2006 © UCB

Pointers

• A pointer is just a C variable whose
value is the address of another
variable!

• After declaring a pointer:
int *ptr;

ptr doesn’t actually point to anything
yet. We can either:

• make it point to something that already
exists, or

• allocate room in memory for something
new that it will point to… (next time)

CS 61C L03 C Arrays (4) A Carle, Summer 2006 © UCB

Pointers

• Declaring a pointer just allocates
space to hold the pointer – it does not
allocate something to be pointed to!

• Local variables in C are not initialized,
they may contain anything.

CS 61C L03 C Arrays (5) A Carle, Summer 2006 © UCB

Pointer Usage Example

Memory and Pointers:0xffff ffff

0x0000 0000

0xcafe 0000

0xbeef 0000

0x0000 0004

CS 61C L03 C Arrays (6) A Carle, Summer 2006 © UCB

Pointer Usage Example

Memory and Pointers:
int *p, v;

0xXXXXXXXX

0xffff ffff

0x0000 0000

0xcafe 0000

0xXXXXXXXX 0xbeef 0000

0x0000 0004

p:

v:

CS 61C L03 C Arrays (7) A Carle, Summer 2006 © UCB

Pointer Usage Example

Memory and Pointers:
int *p, v;
p = &v;0xXXXXXXXX

0xffff ffff

0x0000 0000

0xcafe 0000

0xcafe 0000 0xbeef 0000

0x0000 0004

p:

v:

CS 61C L03 C Arrays (8) A Carle, Summer 2006 © UCB

Pointer Usage Example

Memory and Pointers:
int *p, v;
p = &v;
v = 0x17;

0x0000 0017

0xffff ffff

0x0000 0000

0xcafe 0000

0xcafe 0000 0xbeef 0000

0x0000 0004

p:

v:

CS 61C L03 C Arrays (9) A Carle, Summer 2006 © UCB

Pointer Usage Example

Memory and Pointers:
int *p, v;
p = &v;
v = 0x17;
*p = *p + 4;
V = *p + 4

0x0000 001b

0xffff ffff

0x0000 0000

0xcafe 0000

0xcafe 0000 0xbeef 0000

0x0000 0004

p:

v:

CS 61C L03 C Arrays (10) A Carle, Summer 2006 © UCB

Pointers in C
• Why use pointers?

• If we want to pass a huge struct or array,
it’s easier to pass a pointer than the
whole thing.

• In general, pointers allow cleaner, more
compact code.

• So what are the drawbacks?
• Pointers are probably the single largest
source of bugs in software, so be careful
anytime you deal with them.

• Dangling reference (premature free)
• Memory leaks (tardy free)

CS 61C L03 C Arrays (11) A Carle, Summer 2006 © UCB

C Pointer Dangers

• What does the following code do?

• S E G F A U L T ! (on my machine/os)
• (Not a nice compiler error like you would
hope!)

void f()
{

int *ptr;
*ptr = 5;

}

CS 61C L03 C Arrays (12) A Carle, Summer 2006 © UCB

C Pointer Dangers

• Unlike Java, C lets you cast a value of
any type to any other type without
performing any checking.

int x = 1000;

int *p = x; /* invalid */

int *q = (int *) x; /* valid */

• The first pointer declaration is invalid
since the types do not match.

• The second declaration is valid C but is
almost certainly wrong

• Is it ever correct?

CS 61C L03 C Arrays (13) A Carle, Summer 2006 © UCB

Pointers and Parameter Passing
• Java and C pass a parameter “by value”

• procedure/function gets a copy of the
parameter, so changing the copy cannot
change the original
void addOne (int x) {

x = x + 1;
}

int y = 3;

addOne(y);

•y is still = 3

CS 61C L03 C Arrays (14) A Carle, Summer 2006 © UCB

Pointers and Parameter Passing
• How to get a function to change a value?

void addOne (int *p) {
*p = *p + 1;

}

int y = 3;

addOne(&y);

•y is now = 4

CS 61C L03 C Arrays (15) A Carle, Summer 2006 © UCB

Administrivia

• Office Hours for either GSI?

CS 61C L03 C Arrays (16) A Carle, Summer 2006 © UCB

Arrays (1/7)

• Declaration:
int ar[2];

declares a 2-element integer array.

int ar[] = {795, 635};

declares and fills a 2-elt integer array.
• Accessing elements:

ar[num];

returns the numth element from 0.

CS 61C L03 C Arrays (17) A Carle, Summer 2006 © UCB

Arrays (2/7)

• Arrays are (almost) identical to
pointers

•char *string and char string[] are
nearly identical declarations

• They differ in very subtle ways:
incrementing, declaration of filled arrays

• Key Difference:
An array variable is a CONSTANT
pointer to the first element.

CS 61C L03 C Arrays (18) A Carle, Summer 2006 © UCB

Arrays (3/7)

• Consequences:
•ar is a pointer
•ar[0] is the same as *ar
•ar[2] is the same as *(ar+2)
• We can use pointer arithmetic to access
arrays more conveniently.

• Declared arrays are only allocated
while the scope is valid

char *foo() {
char string[32]; ...;
return string;

} is incorrect

CS 61C L03 C Arrays (19) A Carle, Summer 2006 © UCB

Arrays (4/7)

• Array size n; want to access from 0 to
n-1:
int ar[10], i=0, sum = 0;
...
while (i < 10)

/* sum = sum+ar[i];

i = i + 1; */

sum += ar[i++];

CS 61C L03 C Arrays (20) A Carle, Summer 2006 © UCB

Arrays (5/7)

• Array size n; want to access from 0 to
n-1, so you should use counter AND
utilize a constant for declaration & incr

• Wrong
int i, ar[10];
for(i = 0; i < 10; i++){ ... }

• Right
#define ARRAY_SIZE 10
int i, a[ARRAY_SIZE];
for(i = 0; i < ARRAY_SIZE; i++){ ... }

• Why? SINGLE SOURCE OF TRUTH
• You’re utilizing indirection and avoiding
maintaining two copies of the number 10

CS 61C L03 C Arrays (21) A Carle, Summer 2006 © UCB

Arrays (6/7)

• Pitfall: An array in C does not know its
own length, & bounds not checked!

• Consequence: We can accidentally
access off the end of an array.

• Consequence: We must pass the array
and its size to a procedure which is
going to traverse it.

• Segmentation faults and bus errors:
• These are VERY difficult to find;
be careful!

• You’ll learn how to debug these in lab…

CS 61C L03 C Arrays (22) A Carle, Summer 2006 © UCB

Arrays 7/7: In Functions

• An array parameter can be declared as
an array or a pointer; an array
argument can be passed as a pointer.

• Can be incremented

int strlen(char s[])
{

int n = 0;
while (s[n] != 0)

n++;
return n;

}

int strlen(char *s)
{

int n = 0;
while (s[n] != 0)

n++;
return n;

}
Could be written:
while (s[n])

CS 61C L03 C Arrays (23) A Carle, Summer 2006 © UCB

C Strings (1/3)

• A string in C is just an array of
characters.

char string[] = "abc";

• How do you tell how long a string is?
• Last character is followed by a 0 byte
(null terminator)
int strlen(char s[])
{

int n = 0;
while (s[n] != 0) n++; /* ‘\0’ */
return n;

}

CS 61C L03 C Arrays (24) A Carle, Summer 2006 © UCB

C Strings Headaches (2/3)

• One common mistake is to forget to allocate an
extra byte for the null terminator.

• More generally, C requires the programmer to
manage memory manually (unlike Java or C++).

• When creating a long string by concatenating several smaller
strings, the programmer must insure there is enough space to
store the full string!

• What if you don’t know ahead of time how big your string will
be?

• String constants are immutable:
• char *f = “abc”; f[0]++; /* illegal */

- Because section of mem where “abc” lives is immutable.
• char f [] = “abc”; f[0]++; /* Works! */

- Because, in declaration, c copies abc into space allocated for f.

CS 61C L03 C Arrays (25) A Carle, Summer 2006 © UCB

C String Standard Functions (3/3)

• int strlen(char *string);
• compute the length of string

• int strcmp(char *str1, char *str2);
• return 0 if str1 and str2 are identical (how is

this different from str1 == str2?)

char *strcpy(char *dst, char *src);
• copy the contents of string src to the memory

at dst and return dst. The caller must ensure
that dst has enough memory to hold the data to
be copied.

CS 61C L03 C Arrays (26) A Carle, Summer 2006 © UCB

Pointer Arithmetic (1/5)

• Since a pointer is just a mem address, we
can add to it to traverse an array.

•p+1 returns a ptr to the next array elt.
•(*p)+1 vs *p++ vs *(p+1) vs *(p)++ ?

• x = *p++ ⇒ x = *p ; p = p + 1;

• x = (*p)++⇒ x = *p ; *p = *p + 1;

• What if we have an array of large structs
(objects)?

• C takes care of it: In reality, p+1 doesn’t add
1 to the memory address, it adds the size of
the array element.

CS 61C L03 C Arrays (27) A Carle, Summer 2006 © UCB

Pointer Arithmetic (2/5)
• So what’s valid pointer arithmetic?

• Add an integer to a pointer.
• Subtract 2 pointers (in the same array).
• Compare pointers (<, <=, ==, !=, >, >=)
• Compare pointer to NULL (indicates that
the pointer points to nothing).

• Everything else is illegal since it
makes no sense:

• adding two pointers
• multiplying pointers
• subtract pointer from integer

CS 61C L03 C Arrays (28) A Carle, Summer 2006 © UCB

Pointer Arithmetic (3/5)

• We can use pointer arithmetic to
“walk” through memory:

°C automatically adjusts the pointer by
the right amount each time (i.e., 1 byte
for a char, 4 bytes for an int, etc.)

void copy(int *from, int *to, int n) {
int i;
for (i=0; i<n; i++) {

*to++ = *from++;
}

}

CS 61C L03 C Arrays (29) A Carle, Summer 2006 © UCB

int get(int array[], int n)
{

return (array[n]);
/* OR */
return *(array + n);

}

Pointer Arithmetic (4/5)

• C knows the size of the thing a pointer
points to – every addition or
subtraction moves that many bytes.

• So the following are equivalent:

CS 61C L03 C Arrays (30) A Carle, Summer 2006 © UCB

Pointer Arithmetic (5/5)

• Array size n; want to access from 0 to
n-1
• test for exit by comparing to address one
element past the array

int ar[10], *p, *q, sum = 0;
...
p = ar; q = &(ar[10]);
while (p != q)

/* sum = sum + *p; p = p + 1; */
sum += *p++;

• Is this legal?

• C defines that one element past end of
array must be a valid address, i.e., not
cause an bus error or address error

CS 61C L03 C Arrays (31) A Carle, Summer 2006 © UCB

Pointer Arithmetic Summary
• x = *(p+1) ?

⇒ x = *(p+1) ;

• x = *p+1 ?
⇒ x = (*p) + 1 ;

• x = (*p)++ ?
⇒ x = *p ; *p = *p + 1;

• x = *p++ ? (*p++) ? *(p)++ ? *(p++) ?
⇒ x = *p ; p = p + 1;

• x = *++p ?
⇒ p = p + 1 ; x = *p ;

• Lesson?
• These cause more problems than they solve!

CS 61C L03 C Arrays (32) A Carle, Summer 2006 © UCB

Pointer Arithmetic Peer Instruction Q

How many of the following are invalid?
I. pointer + integer
II. integer + pointer
III. pointer + pointer
IV. pointer – integer
V. integer – pointer
VI. pointer – pointer
VII. compare pointer to pointer
VIII. compare pointer to integer
IX. compare pointer to 0
X. compare pointer to NULL

CS 61C L03 C Arrays (33) A Carle, Summer 2006 © UCB

• How many of the following are invalid?
I. pointer + integer
II. integer + pointer
III. pointer + pointer
IV. pointer – integer
V. integer – pointer
VI. pointer – pointer
VII. compare pointer to pointer
VIII. compare pointer to integer
IX. compare pointer to 0
X. compare pointer to NULL

Pointer Arithmetic Peer Instruction A

ptr + 1
1 + ptr

ptr + ptr
ptr - 1
1 - ptr

ptr - ptr
ptr1 == ptr2

ptr == 1
ptr == NULL
ptr == NULL

CS 61C L03 C Arrays (34) A Carle, Summer 2006 © UCB

“And in Conclusion…”
• Pointers and arrays are virtually same
• C knows how to increment pointers
• C is an efficient language, with little
protection

• Array bounds not checked
• Variables not automatically initialized

• (Beware) The cost of efficiency is
more overhead for the programmer.

• “C gives you a lot of extra rope but be
careful not to hang yourself with it!”

