Inst.eecs.berkeley.edu/~cs6lc/

CS61C : Machine Structures
Lecture #3:. C Pointers & Arrays

. R P A i
- P

2006-06-28

Andy Carle

Q CS 61C LO3 C Arrays (1) A Carle, Summer 2006 © UCB

Address vs. Value

What good is a bunch of memory if you
can’t select parts of It?

« Each memory cell has an address
associated with it.

e Each cell also stores some value.

*Don’t confuse the address referring to
a memory location with the value
stored in that location.

101 102 103 104 105 ...
23 42

ﬂ CS 61C LO3 C Arrays (2) A Carle, Summer 2006 © UCB

Pointers

* A pointer is just a C variable whose
value Is the address of another
variable!

e After declaring a pointer:

int *ptr;
ptr doesn’t actually point to anything
yet. We can either:

* make it point to something that already
exists, or

e allocate room in memory for something
new that it will point to... (next time)

ﬂ CS 61C LO3 C Arrays (3) A Carle, Summer 2006 © UCB

Pointers

*Declaring a pointer just allocates
sIoace to hold the pointer — it does not
allocate something to be pointed to!

eLocal variables in C are not initialized,
they may contain anything.

ﬂ CS 61C LO3 C Arrays (4) A Carle, Summer 2006 © UCB

Pointer Usage Example

Oxffff ffff

Oxcafe 0000

Oxbeef 0000

Q CS 61C L0O3 C Arrays (5)

0x0000 0004
0x0000 0000

Memory and Pointers:

A Carle, Summer 2006 © UCB

Pointer Usage Example

OXXXXXXXXX

Oxffff ffff

Oxcafe 0000

p: |

OXXXKXXXXXX

Oxbeef 0000

Q CS 61C LO3 C Arrays (6)

0x0000 0004
0x0000 0000

Memory and Pointers:

Int *p, v;

A Carle, Summer 2006 © UCB

Pointer Usage Example

OXXXXXXXXX

Oxffff ffff

Oxcafe 0000

p:|

Oxcafe 0000

Oxbeef 0000

ﬂ CS 61C LO3 C Arrays (7)

0x0000 0004
0x0000 0000

Memory and Pointers:

Int *p, v;

p = &v;

A Carle, Summer 2006 © UCB

Pointer Usage Example

Oxfff fiff Memory and Pointers:

Int *p, v;
V: 0x0000 0017 Oxcafe 0000 p — &V,
v = 0x17;

p:|l Oxcafe 0000 Oxbeef 0000

0x0000 0004
0x0000 0000

ﬂ CS 61C LO3 C Arrays (8) A Carle, Summer 2006 © UCB

Pointer Usage Example

Oxfff fiff Memory and Pointers:

Int *p, v;
V: 0x0000 001b Oxcafe 0000 p p— &V,
p:|l Oxcafe 0000 Oxbeef 0000 V = OX171
"p="p + 4
0x0000 0004

oxo0000000 \/ =*p + 4

ﬂ CS 61C LO3 C Arrays (9) A Carle, Summer 2006 © UCB

Pointers in C
\Why use pointers?

o If we want to pass a huge struct or array,
It’s easier to pass a pointer than the
whole thing.

* In general, pointers allow cleaner, more
compact code.

e SO0 what are the drawbacks?

* Pointers are probably the single largest
source of bugs in software, so be careful
anytime you deal with them.

* Dangling reference (premature free)
ﬂ Memory leaks (tardy free)

CS 61C L0O3 C Arrays (10) A Carle, Summer 2006 © UCB

C Pointer Dangers

 \What does the following code do?

void ()
L
int ~ptr;
*ptr = 5;
}

e SEGFAULT! (on my machine/os)

* (Not a nice compiler error like you would
hope!)

ﬂ CS 61C LO3 C Arrays (11) A Carle, Summer 2006 © UCB

C Pointer Dangers

*Unlike Java, C lets you cast a value of
any type to any other type without
performing any checking.

iInt x = 1000;
Int *p = X;
int *q = (int *) Xx;

* The first pointer declaration is invalid
since the types do not match.

*The second declaration is valid C but is
almost certainly wrong

ﬂ oIS it ever correct?
CS 61C L0O3 C Arrays (12) A Carle, Summer 2006 © UCB

Pointers and Parameter Passing

Java and C pass a parameter “by value

e procedure/function gets a copy of the
parameter, so changing the copy cannot
change the original

void addOne (Int x) {
X = X + 1;

}

int y = 3;
addOne(y);
ey Is still =3

ﬂ CS 61C L0O3 C Arrays (13) A Carle, Summer 2006 © UCB

Pointers and Parameter Passing

How to get a function to change a value?

void addOne (int *p) {
*p:*p+1;

}
int y = 3;
addOne(&y) ;

ey IS now =4

Q CS 61C LO3 C Arrays (14) A Carle, Summer 2006 © UCB

Administrivia

e Office Hours for either GSI?

Q CS 61C L0O3 C Arrays (15) A Carle, Summer 2006 © UCB

Arrays (1/7)
e Declaration:
int ar|[2];
declares a 2-element integer array.
int ar[] = {795, 635};

declares and fills a 2-elt integer array.

 Accessing elements:
ar[num];

returns the numt" element from O.

CS 61C L0O3 C Arrays (16) A Carle, Summer 2006 © UCB

Arrays (2/7)

* Arrays are (almost) identical to
pointers

echar *stringand char string|] are
nearly identical declarations

 They differ in very subtle ways:
Incrementing, declaration of filled arrays

« Key Difference:

An array variable is a CONSTANT
pointer to the first element.

Q CS 61C LO3 C Arrays (17) A Carle, Summer 2006 © UCB

Arrays (3/7)

e Consequences:
ear is a pointer
ear[0] is the same as *ar
ear[2] is the same as *(ar+2)

* We can use pointer arithmetic to access
arrays more conveniently.

e Declared arrays are only allocated
while the scope is valid

char *foo() {
char string[32]; ...;

return string;
Q } is incorrect

CS 61C L0O3 C Arrays (18) A Carle, Summer 2006 © UCB

Arrays (4/7)

e Array size n, want to access from 0 to
n-1.
int ar[10], 1=0, sum = O;
while (i < 10)

sum += ar[i++];

ﬂ CS 61C L0O3 C Arrays (19) A Carle, Summer 2006 © UCB

Arrays (5/7)

* Array size n; want to access from 0 to
n-1, so you should use counter AND
utilize a constant for declaration & incr

 Wrong

int 1, ar[10];

for(i = 0; i < 10; i++){ ... }
* Right

#define ARRAY SIZE 10
int i, a[ARRAY SIZE];
for(i = 0; i < ARRAY SIZE; i++){ ... }

*Why? SINGLE SOURCE OF TRUTH

e You're utilizing indirection and avoiding
Q maintaining two copies of the number 10

A Carle, Summer 2006 © UCB

CS 61C LO3 C Arrays (20)

Arrays (6/7)

 Pitfall: An array in C does not know its
own length, & bounds not checked!

« Consequence: We can accidentally
access off the end of an array.

 Consequence: We must pass the array
and its size to a procedure which is
going to traverse it.

 Segmentation faults and bus errors:

e These are VERY difficult to find;
be careful!

You’'ll learn how to debug these in lab...

Q CS 61C LO3 C Arrays (21) A Carle, Summer 2006 © UCB

Arrays 7/7: In Functions

 An array parameter can be declared as
an array or a pointer; an array
argument can be passed as a pointer.

e Can be incremented

int strlen(char s[]) int strlen(char *s)

{ L
int n = 0; int n = 0;
while (s[n] '= 0) while (s[n] '= 0)
n++; n++;
return n;//A\\ return n;
} }

Could be written:

ﬂ while (s[n])
CS 61C L0O3 C Arrays (22) A Carle, Summer 2006 © UCB

C Strings (1/3)

e A string In C is just an array of
characters.

char string[] = "abc';

 How do you tell how long a string is?

e Last character is followed by a O byte
(null terminator)

int strlen(char s[])

1
iInt n = 0;
while (s[n] = 0) n++; /* =\0” */
return n;

ﬂ CS 61C L03 C Arrays (23) A Carle, Summer 2006 © UCB

C Strings Headaches (2/3)

« One common mistake is to forget to allocate an
extra byte for the null terminator.

 More generally, C requires the programmer to
manage memory manually (unlike Java or C++).

 When creating a long string by concatenating several smaller
strings, the programmer must insure there is enough space to
store the full string!

. \évr))at if you don’t know ahead of time how big your string will
e:
« String constants are immutable:
o char *f ="abc”; f[0]++; [*illegal */
Because section of mem where “abc” lives is immutable.
e charf[]="%"abc”; f[0]++; [*Works! */
Because, in declaration, c copies abc into space allocated for f.

Q CS 61C LO3 C Arrays (24) A Carle, Summer 2006 © UCB

C String Standard Functions (3/3)

o Int strien(char *string);
e compute the length of string

e INt strcmp(char *strl, char *str2);

e return O iIf strl and str2 are identical (how Is
this different from strl == str2?)

char *strcpy(char *dst, char *src);

e copy the contents of string src to the memory
at dst and return dst. The caller must ensure
that dst has enough memory to hold the data to

be copied.

ﬂ CS 61C L03 C Arrays (25) A Carle, Summer 2006 © UCB

Pointer Arithmetic (1/5)

eSince a pointer Is just a mem address, we
can add to it to traverse an array.

*p+1 returns a ptr to the next array elt.

° (*p) +1 VS *p++ VS VS * (p) ++ ?
* X =*pt+ DX =*p ; p= p+1;
X = (*p)t+=>x = *p ;

 \What If we have an array of large structs
(objects)?

« C takes care of it: In reality, p+1 doesn’t add
1 to the memory address, it adds the size of

2 7 the array element.
CS 61C L0O3 C Arrays (26) A Carle, Summer 2006 © UCB

Pointer Arithmetic (2/5)

S0 what's valid pointer arithmetic?
 Add an integer to a pointer.
e Subtract 2 pointers (in the same array).
« Compare pointers (<, <=, ==, 1=, >, >=)

« Compare pointer to NULL (Indicates that
the pointer points to nothing).

e Everything else is illegal since it
makes no sense:

e adding two pointers
 multiplying pointers
ﬂ e subtract pointer from integer

CS 61C LO3 C Arrays (27) A Carle, Summer 2006 © UCB

Pointer Arithmetic (3/5)

*We can use pointer arithmetic to
“walk” through memory:

void copy(int *from, Int *to, Int n) {

int 1;

for (1=0; 1<n; 1++) {
*to++ = *from++

}

L

°C automatically adjusts thegoomter by

the right amount each time (i.e., 1 byte
for a char, 4 bytes for an int, etc.)

ﬂ CS 61C L0O3 C Arrays (28) A Carle, Summer 2006 © UCB

Pointer Arithmetic (4/5)

*C knows the size of the thing a pointer
points to — every addition or
subtraction moves that many bytes.

* S0 the following are equivalent:

int get(int array|[], Int n)
1

return (array|[n]);

return *(array + n);

L

ﬂ CS 61C L0O3 C Arrays (29) A Carle, Summer 2006 © UCB

Pointer Arithmetic (5/5)

-Arrlay size n; want to access from 0 to
n_

e test for exit by comparing to address one
element past the array

int ar[10], *p, *q, sum = O;

P12 0= §§r oD

sum += *p++;
*|s this legal?

* C defines that one element past end of
array must be a valid address, I.e., not
2 .cause an bus error or address error

CS 61C L03 C Arrays (30) A Carle, Summer 2006 © UCB

Pointer Arithmetic Summary
* (p+l) ?
x = *(p+l) ;

*p+l ?

Xx=(Cp) +1;

(*p) ++ ?
X =7p ; *p =7*p + 1]

*X

y
UuUu

Uu

°X = *p++ 7 (*p++) ? *(p) ++ ? * (p++) ?
=X =P ;p= p+1;

°X = *4+4p ?
= p=p+1;x=7"p;

e Lesson?
ﬂ. These cause more problems than they solve!

CS 61C L0O3 C Arrays (31) A Carle, Summer 2006 © UCB

Pointer Arithmetic Peer Instruction Q

com
. COom
com
com

ﬂ CS 61C LO3 C Arrays (32)

XXSSS<C

pare
pare
pare
pare

nointer
nointer

Dointer to pointer
pointer to integer
pointerto O
pointer to NULL

How many of the following are invalid?
pointer + integer
Integer + pointer
pointer + pointer
pointer — integer
Integer —
pointer —

A Carle, Summer 2006 © UCB

Pointer Arithmetic Peer Instruction A
« How many of the following are invalid?

. pointer + integer

1. Integer + pointer

Ill. pointer + pointer

IVV. pointer —integer

V. Integer — pointer

VI. pointer — pointer

VIl. compare pointer to pointer
VIlIl. compare pointer to integer
IX. compare pointerto O

X. ~compare pointer to NULL

ﬂ CS 61C L0O3 C Arrays (33)

ptr +1

1+ ptr

ptr + ptr

ptr-1

1 - ptr

ptr - ptr

ptrl == ptr2
ptr ==

ptr == NULL

ptr == NULL

A Carle, Summer 2006 © UCB

“And in Conclusion...”
* Pointers and arrays are virtually same

* C knows how to increment pointers

*C Is an efficient language, with little
protection
* Array bounds not checked
e Variables not automatically initialized
* (Beware) The cost of efficiency Is
more overhead for the programmer.

«“C gives you a lot of extrarope but be
careful not to hang yourself with it!”

Q CS 61C LO3 C Arrays (34) A Carle, Summer 2006 © UCB

