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Address vs. Value

• What good is a bunch of memory if you 
can’t select parts of it?

• Each memory cell has an address
associated with it.

• Each cell also stores some value.

• Don’t confuse the address referring to 
a memory location with the value
stored in that location.

23 42 ......
101 102 103 104 105 ...
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Pointers

• A pointer is just a C variable whose 
value is the address of another 
variable!

• After declaring a pointer:
int *ptr;

ptr doesn’t actually point to anything 
yet.  We can either:

• make it point to something that already 
exists, or

• allocate room in memory for something 
new that it will point to… (next time)



CS 61C L03 C Arrays (4) A Carle, Summer 2006 © UCB

Pointers

• Declaring a pointer just allocates 
space to hold the pointer – it does not 
allocate something to be pointed to!

• Local variables in C are not initialized, 
they may contain anything.
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Pointer Usage Example

Memory and Pointers:0xffff ffff

0x0000 0000

0xcafe 0000

0xbeef 0000

0x0000 0004
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Pointer Usage Example

Memory and Pointers:
int *p, v;

0xXXXXXXXX

0xffff ffff

0x0000 0000

0xcafe 0000

0xXXXXXXXX 0xbeef 0000

0x0000 0004

p:

v:
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Pointer Usage Example

Memory and Pointers:
int *p, v;
p = &v;0xXXXXXXXX

0xffff ffff

0x0000 0000

0xcafe 0000

0xcafe 0000 0xbeef 0000

0x0000 0004

p:

v:
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Pointer Usage Example

Memory and Pointers:
int *p, v;
p = &v;
v = 0x17;

0x0000 0017

0xffff ffff

0x0000 0000

0xcafe 0000

0xcafe 0000 0xbeef 0000

0x0000 0004

p:

v:
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Pointer Usage Example

Memory and Pointers:
int *p, v;
p = &v;
v = 0x17;
*p = *p + 4;
V = *p + 4

0x0000 001b

0xffff ffff

0x0000 0000

0xcafe 0000

0xcafe 0000 0xbeef 0000

0x0000 0004

p:

v:
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Pointers in C
• Why use pointers?

• If we want to pass a huge struct or array, 
it’s easier to pass a pointer than the 
whole thing.

• In general, pointers allow cleaner, more 
compact code.

• So what are the drawbacks?
• Pointers are probably the single largest 
source of bugs in software, so be careful 
anytime you deal with them.

• Dangling reference (premature free)
• Memory leaks (tardy free)
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C Pointer Dangers

• What does the following code do?

• S E G F A U L T ! (on my machine/os)
• (Not a nice compiler error like you would 
hope!)

void f()
{

int *ptr;
*ptr = 5;

}
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C Pointer Dangers

• Unlike Java, C lets you cast a value of 
any type to any other type without
performing any checking.

int x = 1000;

int *p = x;         /* invalid */

int *q = (int *) x; /* valid */

• The first pointer declaration is invalid 
since the types do not match.

• The second declaration is valid C but is 
almost certainly wrong

• Is it ever correct?
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Pointers and Parameter Passing
• Java and C pass a parameter “by value”

• procedure/function gets a copy of the 
parameter, so changing the copy cannot 
change the original
void addOne (int x) {

x = x + 1;
}

int y = 3;

addOne(y);

•y is still = 3
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Pointers and Parameter Passing
• How to get a function to change a value?

void addOne (int *p) {
*p = *p + 1;

}

int y = 3;

addOne(&y);

•y is now = 4
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Administrivia

• Office Hours for either GSI?
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Arrays (1/7)

• Declaration:
int ar[2];

declares a 2-element integer array.

int ar[] = {795, 635};

declares and fills a 2-elt integer array.
• Accessing elements:

ar[num];

returns the numth element from 0.
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Arrays (2/7)

• Arrays are (almost) identical to 
pointers

•char *string and char string[] are 
nearly identical declarations

• They differ in very subtle ways: 
incrementing, declaration of filled arrays

• Key Difference: 
An array variable is a CONSTANT
pointer to the first element.
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Arrays (3/7)

• Consequences:
•ar is a pointer
•ar[0] is the same as *ar
•ar[2] is the same as *(ar+2)
• We can use pointer arithmetic to access 
arrays more conveniently.

• Declared arrays are only allocated 
while the scope is valid

char *foo() {
char string[32]; ...;
return string;

} is incorrect
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Arrays (4/7)

• Array size n; want to access from 0 to 
n-1:
int ar[10], i=0, sum = 0;
...
while (i < 10)

/* sum = sum+ar[i]; 

i = i + 1; */

sum += ar[i++];
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Arrays (5/7)

• Array size n; want to access from 0 to 
n-1, so you should use counter AND 
utilize a constant for declaration & incr

• Wrong
int i, ar[10];
for(i = 0; i < 10; i++){ ... }

• Right
#define ARRAY_SIZE 10
int i, a[ARRAY_SIZE];
for(i = 0; i < ARRAY_SIZE; i++){ ... }

• Why? SINGLE SOURCE OF TRUTH
• You’re utilizing indirection and avoiding 
maintaining two copies of the number 10
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Arrays (6/7)

• Pitfall: An array in C does not know its 
own length, & bounds not checked!

• Consequence: We can accidentally 
access off the end of an array.

• Consequence: We must pass the array 
and its size to a procedure which is 
going to traverse it.

• Segmentation faults and bus errors:
• These are VERY difficult to find; 
be careful!

• You’ll learn how to debug these in lab…
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Arrays 7/7: In Functions

• An array parameter can be declared as 
an array or a pointer; an array 
argument can be passed as a pointer.

• Can be incremented

int strlen(char s[])
{

int n = 0;
while (s[n] != 0)

n++;
return n;

}

int strlen(char *s)
{

int n = 0;
while (s[n] != 0)

n++;
return n;

}
Could be written:
while (s[n])
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C Strings (1/3)

• A string in C is just an array of 
characters.

char string[] = "abc";

• How do you tell how long a string is?
• Last character is followed by a 0 byte 
(null terminator)
int strlen(char s[])
{

int n = 0;
while (s[n] != 0) n++; /* ‘\0’ */
return n;

}
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C Strings Headaches  (2/3)

• One common mistake is to forget to allocate an 
extra byte for the null terminator.

• More generally, C requires the programmer to 
manage memory manually (unlike Java or C++).

• When creating a long string by concatenating several smaller 
strings, the programmer must insure there is enough space to 
store the full string!

• What if you don’t know ahead of time how big your string will 
be?

• String constants are immutable:
• char *f = “abc”;     f[0]++;    /* illegal */

- Because section of mem where “abc” lives is immutable.
• char f [ ] = “abc”;  f[0]++;    /* Works! */

- Because, in declaration, c copies abc into space allocated for f.
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C String Standard Functions  (3/3)

• int strlen(char *string);
• compute the length of string

• int strcmp(char *str1, char *str2);
• return 0 if str1 and str2 are identical (how is 

this different from str1 == str2?)

char *strcpy(char *dst, char *src);
• copy the contents of string src to the memory 

at dst and return dst.  The caller must ensure 
that dst has enough memory to hold the data to 
be copied.
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Pointer Arithmetic (1/5)

• Since a pointer is just a mem address, we 
can add to it to traverse an array.

•p+1 returns a ptr to the next array elt.
•(*p)+1 vs *p++ vs *(p+1) vs *(p)++ ?

• x = *p++ ⇒ x = *p ; p =  p + 1;

• x = (*p)++⇒ x = *p ; *p = *p + 1;

• What if we have an array of large structs
(objects)?

• C takes care of it: In reality, p+1 doesn’t add 
1 to the memory address, it adds the size of 
the array element.
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Pointer Arithmetic (2/5)
• So what’s valid pointer arithmetic?

• Add an integer to a pointer.
• Subtract 2 pointers (in the same array).
• Compare pointers (<, <=, ==, !=, >, >=)
• Compare pointer to NULL (indicates that 
the pointer points to nothing).

• Everything else is illegal since it 
makes no sense:

• adding two pointers
• multiplying pointers 
• subtract pointer from integer
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Pointer Arithmetic (3/5)

• We can use pointer arithmetic to 
“walk” through memory:

°C automatically adjusts the pointer by 
the right amount each time (i.e., 1 byte 
for a char, 4 bytes for an int, etc.)

void copy(int *from, int *to, int n) {
int i;
for (i=0; i<n; i++) {

*to++ = *from++;
}

}
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int get(int array[], int n)
{

return  (array[n]);
/* OR */
return *(array + n);

}

Pointer Arithmetic (4/5)

• C knows the size of the thing a pointer 
points to – every addition or 
subtraction moves that many bytes.

• So the following are equivalent:
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Pointer Arithmetic (5/5)

• Array size n; want to access from 0 to 
n-1
• test for exit by comparing to address one 
element past the array

int ar[10], *p, *q, sum = 0;
...
p = ar; q = &(ar[10]);
while (p != q)

/* sum = sum + *p; p = p + 1; */
sum += *p++;

• Is this legal?

• C defines that one element past end of 
array must be a valid address, i.e., not 
cause an bus error or address error
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Pointer Arithmetic Summary
• x = *(p+1) ?

⇒ x = *(p+1) ;

• x = *p+1 ?
⇒ x = (*p) + 1 ;

• x = (*p)++ ? 
⇒ x = *p ; *p = *p + 1;

• x = *p++ ? (*p++) ? *(p)++ ? *(p++) ?
⇒ x = *p ; p =  p + 1;

• x = *++p ? 
⇒ p = p + 1 ; x = *p ;

• Lesson?
• These cause more problems than they solve!
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Pointer Arithmetic Peer Instruction Q

How many of the following are invalid?
I. pointer + integer
II. integer + pointer
III. pointer + pointer
IV. pointer – integer
V. integer – pointer
VI. pointer – pointer
VII. compare pointer to pointer
VIII. compare pointer to integer
IX. compare pointer to 0
X. compare pointer to NULL
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• How many of the following are invalid?
I. pointer + integer
II. integer + pointer
III. pointer + pointer
IV. pointer – integer
V. integer – pointer
VI. pointer – pointer
VII. compare pointer to pointer
VIII. compare pointer to integer
IX. compare pointer to 0
X. compare pointer to NULL

Pointer Arithmetic Peer Instruction A

ptr + 1
1 + ptr

ptr + ptr
ptr - 1
1 - ptr

ptr - ptr
ptr1 == ptr2

ptr == 1
ptr == NULL
ptr == NULL
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“And in Conclusion…”
• Pointers and arrays are virtually same
• C knows how to increment pointers
• C is an efficient language, with little 
protection

• Array bounds not checked
• Variables not automatically initialized

• (Beware) The cost of efficiency is 
more overhead for the programmer.

• “C gives you a lot of extra rope but be 
careful not to hang yourself with it!”


