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Review: Arrays

• Arrays are (almost) identical to 
pointers

•char *string and char string[] are 
nearly identical declarations

- They differ in subtle ways: incrementing, 
declaration of filled arrays

- Key Difference: an array variable is a 
CONSTANT pointer to the first element.

• ar[i] *(ar+i)
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Review: Arrays and Pointers

• Array size n; want to access from 0 to n-1:

Array Indexing Versions:

#define ARSIZE 10
int ar[ARSIZE];
int i=0, sum = 0;

...
while (i < ARSIZE)

sum += ar[i++];

or

while (i < ARSIZE)
sum += *(ar + i++);

Pointer Indexing Version:

#define ARSIZE 10
int ar[ARSIZE];
int *p = ar, *q = &ar[10]*; 
int sum = 0;

...
while (p < q)

sum += *p++;

* C allows 1 past end of array!
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Review:  Common C Errors

• There is a difference between 
assignment and equality
•a = b is assignment
•a == b is an equality test

• This is one of the most common errors 
for beginning C programmers!

• Precedence Rules
• int **a = {{1, 2}, {3, 4}}
• *a[1]++;         ([ ] > *)
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Topic Outline

• Strings
• Handles
• Structs
• Heap Allocation Intro
• Linked List Example
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C Strings (1/3)

• A string in C is just an array of 
characters.

char string[] = "abc";

• How do you tell how long a string is?
• Last character is followed by a 0 byte 
(null terminator)
int strlen(char s[])
{

int n = 0;
while (s[n] != 0) n++; /* ‘\0’ */
return n;

}



CS 61C L5 Structs (7) A Carle, Summer 2006 © UCB

C Strings Headaches  (2/3)

• One common mistake is to forget to allocate an 
extra byte for the null terminator.

• More generally, C requires the programmer to 
manage memory manually (unlike Java or C++).

• When creating a long string by concatenating several smaller 
strings, the programmer must insure there is enough space to 
store the full string!

• What if you don’t know ahead of time how big your string will 
be?

• String constants are immutable:
• char *f = “abc”;     f[0]++;    /* illegal */

- Because section of mem where “abc” lives is immutable.
• char f [ ] = “abc”;  f[0]++;    /* Works! */

- Because, in declaration, c copies abc into space allocated for f.
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C String Standard Functions  (3/3)

• int strlen(char *string);
• compute the length of string

• int strcmp(char *str1, char *str2);
• return 0 if str1 and str2 are identical (how is 

this different from str1 == str2?)

char *strcpy(char *dst, char *src);
• copy the contents of string src to the memory 

at dst and return dst.  The caller must ensure 
that dst has enough memory to hold the data to 
be copied.
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Pointers to pointers (1/4)

• Sometimes you want to have a 
procedure increment a variable?

• What gets printed?

void AddOne(int x)
{     x =  x + 1;   }

int y = 5;
AddOne( y);
printf(“y = %d\n”, y);

y = 5

…review…
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Pointers to pointers (2/4)

• Solved by passing in a pointer to our 
subroutine.

• Now what gets printed?

void AddOne(int *p)
{    *p = *p + 1;   }

int y = 5;
AddOne(&y);
printf(“y = %d\n”, y);

y = 6

…review…
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Pointers to pointers (3/4)

• But what if what you want changed is 
a pointer?

• What gets printed?

void IncrementPtr(int *p)
{    p =  p + 1;   }

int A[3] = {50, 60, 70};
int *q = A;
IncrementPtr( q);
printf(“*q = %d\n”, *q);

*q = 50

50 60 70

A q
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Pointers to pointers (4/4)

• Solution! Pass a pointer to a pointer, 
called a handle, declared as **h

• Now what gets printed?

void IncrementPtr(int **h)
{   *h = *h + 1;   }

int A[3] = {50, 60, 70};
int *q = A;
IncrementPtr(&q);
printf(“*q = %d\n”, *q);

*q = 60

50 60 70

A q q
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C structures : Overview  (1/3)

• A struct is a data structure 
composed of simpler data types.

• Somewhat like a class in Java/C++ but without 
methods or inheritance.  Don’t get hung up on 
this comparison.

struct point {
int x;
int y;

};
void PrintPoint(struct point p)
{

printf(“(%d,%d)”, p.x, p.y);
}
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C structures: Pointers to them  (2/3)

• The C arrow operator (->) 
dereferences and extracts a structure 
field with a single operator.

• The following are equivalent:

struct point *p;

printf(“x is %d\n”, (*p).x);
printf(“x is %d\n”, p->x);
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How big are structs? (3/3)

• C operator sizeof() which gives size 
in bytes (of type or variable)

• How big is sizeof(p)? 
struct p {

char x;
int y;

};

5 bytes? 8 bytes? 
Compiler may word align integer y
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Dynamic Memory Allocation (1/4)
• C has operator sizeof() which gives 
size in bytes (of type or variable)

• Assuming the size of objects can be 
misleading & is bad style, so use 
sizeof(type)

• Many years ago an int was 16 bits, and 
programs assumed it was 2 bytes
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Dynamic Memory Allocation (2/4)

• To allocate room for something new to 
point to, use malloc() (with the help of a 
typecast and sizeof):
ptr = (int *) malloc (sizeof(int));

• Now, ptr points to a space somewhere in 
memory of size (sizeof(int)) in bytes.

•(int *) simply tells the compiler what will 
go into that space (called a typecast).

•malloc is almost never used for 1 var
ptr = (int *) malloc (n*sizeof(int));

• This allocates an array of n integers.
CS 61C L5 Structs (18) A Carle, Summer 2006 © UCB

Dynamic Memory Allocation (3/4)

• Once malloc() is called, the memory 
location might contain anything, so 
don’t use it until you’ve set its value.

• After dynamically allocating space, we 
must dynamically free it:
free(ptr);

• Use this command to clean up.
• OS keeps track of size to free.
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Dynamic Memory Allocation (4/4)

• Malloc does not always succeed.
• System could be out of memory
• An error occurred during the memory 
request

• Operating system just doesn’t like you 
today…

• Always check the pointer you get back 
to make sure it is not NULL.

• int *p;
if ((p = (int*) malloc(10 * sizeof(int))) == NULL) { 

/*do something to recover */
} 
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Administrivia

• Holiday Tomorrow!
• No Lecture
• No Lab
• Yes Fireworks
• Yes Potato Salad

• HW1 Due Yesterday
• HW2 Due 

Wednesday
• HW3 Out Today,

Due Sunday
• Project 1 Out Soon
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Binky Pointer Video (thanks to NP @ SU)
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Linked List Example

• Let’s look at an example of using 
structures, pointers, malloc(), and 
free() to implement a linked list of 
strings.

struct Node {
char *value;
struct Node *next;  

};
typedef Node *List;

/* Create a new (empty) list */
List ListNew(void)
{ return NULL; }
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Linked List Example

/* add a string to an existing list */
List list_add(List list, char *string)
{

struct Node *node =
(struct Node*) malloc(sizeof(struct Node));

node->value =
(char*) malloc(strlen(string) + 1);

strcpy(node->value, string);
node->next = list;
return node;

}
list:

string:
“abc”

… …
NULL
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Linked List Example

/* add a string to an existing list */
List list_add(List list, char *string)
{

struct Node *node =
(struct Node*) malloc(sizeof(struct Node));

node->value =
(char*) malloc(strlen(string) + 1);

strcpy(node->value, string);
node->next = list;
return node;

}

node:
list:

string:
“abc”

… …
NULL?

?



CS 61C L5 Structs (25) A Carle, Summer 2006 © UCB

Linked List Example

/* add a string to an existing list */
List list_add(List list, char *string)
{

struct Node *node =
(struct Node*) malloc(sizeof(struct Node));

node->value =
(char*) malloc(strlen(string) + 1);

strcpy(node->value, string);
node->next = list;
return node;

}

node:
list:

string:
“abc”

… …
NULL

?

“????”
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Linked List Example

/* add a string to an existing list */
List list_add(List list, char *string)
{

struct Node *node =
(struct Node*) malloc(sizeof(struct Node));

node->value =
(char*) malloc(strlen(string) + 1);

strcpy(node->value, string);
node->next = list;
return node;

}

node:
list:

string:
“abc”

… …
NULL

?

“abc”
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Linked List Example

/* add a string to an existing list */
List list_add(List list, char *string)
{

struct Node *node =
(struct Node*) malloc(sizeof(struct Node));

node->value =
(char*) malloc(strlen(string) + 1);

strcpy(node->value, string);
node->next = list;
return node;

}

node:
list:

string:
“abc”

… …
NULL

“abc”
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Linked List Example

/* add a string to an existing list */
List list_add(List list, char *string)
{

struct Node *node =
(struct Node*) malloc(sizeof(struct Node));

node->value =
(char*) malloc(strlen(string) + 1);

strcpy(node->value, string);
node->next = list;
return node;

}

node: … …
NULL

“abc”
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“And in Conclusion…”

• Use handles to change pointers
• Create abstractions with structures
• Dynamically allocated heap memory 
must be manually deallocated in C.

• Use malloc() and free() to allocate 
and deallocate memory from heap.

• What is the heap?  Wednesday’s subject!


