
CS 61C L5 Structs (1) A Carle, Summer 2006 © UCB

inst.eecs.berkeley.edu/~cs61c/su06
CS61C : Machine Structures

Lecture #5: Strings & Structs

2006-07-03
Andy Carle

CS 61C L5 Structs (2) A Carle, Summer 2006 © UCB

Review: Arrays

• Arrays are (almost) identical to
pointers

•char *string and char string[] are
nearly identical declarations

- They differ in subtle ways: incrementing,
declaration of filled arrays

- Key Difference: an array variable is a
CONSTANT pointer to the first element.

• ar[i] *(ar+i)

CS 61C L5 Structs (3) A Carle, Summer 2006 © UCB

Review: Arrays and Pointers

• Array size n; want to access from 0 to n-1:

Array Indexing Versions:

#define ARSIZE 10
int ar[ARSIZE];
int i=0, sum = 0;

...
while (i < ARSIZE)

sum += ar[i++];

or

while (i < ARSIZE)
sum += *(ar + i++);

Pointer Indexing Version:

#define ARSIZE 10
int ar[ARSIZE];
int *p = ar, *q = &ar[10]*;
int sum = 0;

...
while (p < q)

sum += *p++;

* C allows 1 past end of array!

CS 61C L5 Structs (4) A Carle, Summer 2006 © UCB

Review: Common C Errors

• There is a difference between
assignment and equality
•a = b is assignment
•a == b is an equality test

• This is one of the most common errors
for beginning C programmers!

• Precedence Rules
• int **a = {{1, 2}, {3, 4}}
• *a[1]++; ([] > *)

CS 61C L5 Structs (5) A Carle, Summer 2006 © UCB

Topic Outline

• Strings
• Handles
• Structs
• Heap Allocation Intro
• Linked List Example

CS 61C L5 Structs (6) A Carle, Summer 2006 © UCB

C Strings (1/3)

• A string in C is just an array of
characters.

char string[] = "abc";

• How do you tell how long a string is?
• Last character is followed by a 0 byte
(null terminator)
int strlen(char s[])
{

int n = 0;
while (s[n] != 0) n++; /* ‘\0’ */
return n;

}

CS 61C L5 Structs (7) A Carle, Summer 2006 © UCB

C Strings Headaches (2/3)

• One common mistake is to forget to allocate an
extra byte for the null terminator.

• More generally, C requires the programmer to
manage memory manually (unlike Java or C++).

• When creating a long string by concatenating several smaller
strings, the programmer must insure there is enough space to
store the full string!

• What if you don’t know ahead of time how big your string will
be?

• String constants are immutable:
• char *f = “abc”; f[0]++; /* illegal */

- Because section of mem where “abc” lives is immutable.
• char f [] = “abc”; f[0]++; /* Works! */

- Because, in declaration, c copies abc into space allocated for f.

CS 61C L5 Structs (8) A Carle, Summer 2006 © UCB

C String Standard Functions (3/3)

• int strlen(char *string);
• compute the length of string

• int strcmp(char *str1, char *str2);
• return 0 if str1 and str2 are identical (how is

this different from str1 == str2?)

char *strcpy(char *dst, char *src);
• copy the contents of string src to the memory

at dst and return dst. The caller must ensure
that dst has enough memory to hold the data to
be copied.

CS 61C L5 Structs (9) A Carle, Summer 2006 © UCB

Pointers to pointers (1/4)

• Sometimes you want to have a
procedure increment a variable?

• What gets printed?

void AddOne(int x)
{ x = x + 1; }

int y = 5;
AddOne(y);
printf(“y = %d\n”, y);

y = 5

…review…

CS 61C L5 Structs (10) A Carle, Summer 2006 © UCB

Pointers to pointers (2/4)

• Solved by passing in a pointer to our
subroutine.

• Now what gets printed?

void AddOne(int *p)
{ *p = *p + 1; }

int y = 5;
AddOne(&y);
printf(“y = %d\n”, y);

y = 6

…review…

CS 61C L5 Structs (11) A Carle, Summer 2006 © UCB

Pointers to pointers (3/4)

• But what if what you want changed is
a pointer?

• What gets printed?

void IncrementPtr(int *p)
{ p = p + 1; }

int A[3] = {50, 60, 70};
int *q = A;
IncrementPtr(q);
printf(“*q = %d\n”, *q);

*q = 50

50 60 70

A q

CS 61C L5 Structs (12) A Carle, Summer 2006 © UCB

Pointers to pointers (4/4)

• Solution! Pass a pointer to a pointer,
called a handle, declared as **h

• Now what gets printed?

void IncrementPtr(int **h)
{ *h = *h + 1; }

int A[3] = {50, 60, 70};
int *q = A;
IncrementPtr(&q);
printf(“*q = %d\n”, *q);

*q = 60

50 60 70

A q q

CS 61C L5 Structs (13) A Carle, Summer 2006 © UCB

C structures : Overview (1/3)

• A struct is a data structure
composed of simpler data types.

• Somewhat like a class in Java/C++ but without
methods or inheritance. Don’t get hung up on
this comparison.

struct point {
int x;
int y;

};
void PrintPoint(struct point p)
{

printf(“(%d,%d)”, p.x, p.y);
}

CS 61C L5 Structs (14) A Carle, Summer 2006 © UCB

C structures: Pointers to them (2/3)

• The C arrow operator (->)
dereferences and extracts a structure
field with a single operator.

• The following are equivalent:

struct point *p;

printf(“x is %d\n”, (*p).x);
printf(“x is %d\n”, p->x);

CS 61C L5 Structs (15) A Carle, Summer 2006 © UCB

How big are structs? (3/3)

• C operator sizeof() which gives size
in bytes (of type or variable)

• How big is sizeof(p)?
struct p {

char x;
int y;

};

5 bytes? 8 bytes?
Compiler may word align integer y

CS 61C L5 Structs (16) A Carle, Summer 2006 © UCB

Dynamic Memory Allocation (1/4)
• C has operator sizeof() which gives
size in bytes (of type or variable)

• Assuming the size of objects can be
misleading & is bad style, so use
sizeof(type)

• Many years ago an int was 16 bits, and
programs assumed it was 2 bytes

CS 61C L5 Structs (17) A Carle, Summer 2006 © UCB

Dynamic Memory Allocation (2/4)

• To allocate room for something new to
point to, use malloc() (with the help of a
typecast and sizeof):
ptr = (int *) malloc (sizeof(int));

• Now, ptr points to a space somewhere in
memory of size (sizeof(int)) in bytes.

•(int *) simply tells the compiler what will
go into that space (called a typecast).

•malloc is almost never used for 1 var
ptr = (int *) malloc (n*sizeof(int));

• This allocates an array of n integers.
CS 61C L5 Structs (18) A Carle, Summer 2006 © UCB

Dynamic Memory Allocation (3/4)

• Once malloc() is called, the memory
location might contain anything, so
don’t use it until you’ve set its value.

• After dynamically allocating space, we
must dynamically free it:
free(ptr);

• Use this command to clean up.
• OS keeps track of size to free.

CS 61C L5 Structs (19) A Carle, Summer 2006 © UCB

Dynamic Memory Allocation (4/4)

• Malloc does not always succeed.
• System could be out of memory
• An error occurred during the memory
request

• Operating system just doesn’t like you
today…

• Always check the pointer you get back
to make sure it is not NULL.

• int *p;
if ((p = (int*) malloc(10 * sizeof(int))) == NULL) {

/*do something to recover */
}

CS 61C L5 Structs (20) A Carle, Summer 2006 © UCB

Administrivia

• Holiday Tomorrow!
• No Lecture
• No Lab
• Yes Fireworks
• Yes Potato Salad

• HW1 Due Yesterday
• HW2 Due

Wednesday
• HW3 Out Today,

Due Sunday
• Project 1 Out Soon

CS 61C L5 Structs (21) A Carle, Summer 2006 © UCB

Binky Pointer Video (thanks to NP @ SU)

CS 61C L5 Structs (22) A Carle, Summer 2006 © UCB

Linked List Example

• Let’s look at an example of using
structures, pointers, malloc(), and
free() to implement a linked list of
strings.

struct Node {
char *value;
struct Node *next;

};
typedef Node *List;

/* Create a new (empty) list */
List ListNew(void)
{ return NULL; }

CS 61C L5 Structs (23) A Carle, Summer 2006 © UCB

Linked List Example

/* add a string to an existing list */
List list_add(List list, char *string)
{

struct Node *node =
(struct Node*) malloc(sizeof(struct Node));

node->value =
(char*) malloc(strlen(string) + 1);

strcpy(node->value, string);
node->next = list;
return node;

}
list:

string:
“abc”

… …
NULL

CS 61C L5 Structs (24) A Carle, Summer 2006 © UCB

Linked List Example

/* add a string to an existing list */
List list_add(List list, char *string)
{

struct Node *node =
(struct Node*) malloc(sizeof(struct Node));

node->value =
(char*) malloc(strlen(string) + 1);

strcpy(node->value, string);
node->next = list;
return node;

}

node:
list:

string:
“abc”

… …
NULL?

?

CS 61C L5 Structs (25) A Carle, Summer 2006 © UCB

Linked List Example

/* add a string to an existing list */
List list_add(List list, char *string)
{

struct Node *node =
(struct Node*) malloc(sizeof(struct Node));

node->value =
(char*) malloc(strlen(string) + 1);

strcpy(node->value, string);
node->next = list;
return node;

}

node:
list:

string:
“abc”

… …
NULL

?

“????”

CS 61C L5 Structs (26) A Carle, Summer 2006 © UCB

Linked List Example

/* add a string to an existing list */
List list_add(List list, char *string)
{

struct Node *node =
(struct Node*) malloc(sizeof(struct Node));

node->value =
(char*) malloc(strlen(string) + 1);

strcpy(node->value, string);
node->next = list;
return node;

}

node:
list:

string:
“abc”

… …
NULL

?

“abc”

CS 61C L5 Structs (27) A Carle, Summer 2006 © UCB

Linked List Example

/* add a string to an existing list */
List list_add(List list, char *string)
{

struct Node *node =
(struct Node*) malloc(sizeof(struct Node));

node->value =
(char*) malloc(strlen(string) + 1);

strcpy(node->value, string);
node->next = list;
return node;

}

node:
list:

string:
“abc”

… …
NULL

“abc”

CS 61C L5 Structs (28) A Carle, Summer 2006 © UCB

Linked List Example

/* add a string to an existing list */
List list_add(List list, char *string)
{

struct Node *node =
(struct Node*) malloc(sizeof(struct Node));

node->value =
(char*) malloc(strlen(string) + 1);

strcpy(node->value, string);
node->next = list;
return node;

}

node: … …
NULL

“abc”

CS 61C L5 Structs (29) A Carle, Summer 2006 © UCB

“And in Conclusion…”

• Use handles to change pointers
• Create abstractions with structures
• Dynamically allocated heap memory
must be manually deallocated in C.

• Use malloc() and free() to allocate
and deallocate memory from heap.

• What is the heap? Wednesday’s subject!

