
CS 61C L06 Memory Management (1) A Carle, Summer 2006 © UCB

inst.eecs.berkeley.edu/~cs61c/su06
CS61C : Machine Structures

Lecture #6: Memory Management

2006-07-05
Andy Carle

CS 61C L06 Memory Management (2) A Carle, Summer 2006 © UCB

Memory Management (1/2)

• Variable declaration allocates memory
• outside a procedure -> static storage
• inside procedure -> stack

- freed when procedure returns.

• Malloc request
• Pointer: static or stack
• Content: on heap

int myGlobal;
main() {
int myTemp;
int *f=
malloc(16);

}

CS 61C L06 Memory Management (3) A Carle, Summer 2006 © UCB

Memory Management (2/2)
• A program’s address
space contains 4 regions:

• stack: local variables,
grows downward

• heap: space requested for
pointers via malloc() ;
resizes dynamically,
grows upward

• static data: variables
declared outside main,
does not grow or shrink

• code: loaded when
program starts, does not
change

code

static data

heap

stack

For now, OS somehow
prevents accesses between
stack and heap (gray hash
lines). Wait for virtual memory

~ FFFF FFFFhex

~ 0hex

CS 61C L06 Memory Management (4) A Carle, Summer 2006 © UCB

The Stack (1/4)
• Terminology:

• Stack is composed of frames
• A frame corresponds to one
procedure invocation

• Stack frame includes:
- Return address of caller
- Space for other local variables

• When procedure ends, stack
frame is tossed off the stack;
frees memory for future stack
frames frame

frame

frame

frame

$SP

CS 61C L06 Memory Management (5) A Carle, Summer 2006 © UCB

The Stack (2/4)
• Implementation:

• By convention, stack grows down
in memory.

• Stack pointer ($SP) points to next
available address

• PUSH: On invocation, callee moves
$SP down to create new frame to
hold callee’s local variables and RA

- (old SP – new SP) size of frame
• POP: On return, callee moves $SP
back to original, returns to caller frame

frame

frame

frame

$SP

CS 61C L06 Memory Management (6) A Carle, Summer 2006 © UCB

The Stack (3/4)

• Last In, First Out (LIFO) memory usage
main ()
{ a(0);
}

void a (int m)
{ b(1);
}
void b (int n)
{ c(2);
}
void c (int o)
{ d(3);
}
void d (int p)
{
}

stack

Stack Pointer

Stack Pointer

Stack Pointer

Stack Pointer

Stack Pointer

CS 61C L06 Memory Management (7) A Carle, Summer 2006 © UCB

• Pointers in C allow access to deallocated
memory, leading to hard-to-find bugs !
int *ptr () {

int y;
y = 3;
return &y;

}

main () {
int *stackAddr;
stackAddr = ptr();
printf("%d", *stackAddr); /* 3 */

printf("%d", *stackAddr); /* XXX */

}

The Stack (4/4): Dangling Pointers

main

ptr()
(y==3)

SP

main
SP main

printf()
(y==?)

SP

CS 61C L06 Memory Management (8) A Carle, Summer 2006 © UCB

Static and Code Segments

• Code (Text Segment)
• Holds instructions to be executed
• Constant size

• Static Segment
• Holds global variables whose addresses
are known at compile time

- Compare to the heap (malloc calls) where
address isn’t known

CS 61C L06 Memory Management (9) A Carle, Summer 2006 © UCB

The Heap (Dynamic memory)
• Large pool of memory,
not allocated in contiguous order

• back-to-back requests for heap memory
could return blocks very far apart

• where Java new command allocates memory

• In C, specify number of bytes of memory
explicitly to allocate item

int *ptr;
ptr = (int *) malloc(4);
/* malloc returns type (void *),
so need to cast to right type */

•malloc(): Allocates raw, uninitialized
memory from heap

CS 61C L06 Memory Management (10) A Carle, Summer 2006 © UCB

Memory Management

• How do we manage memory?
• Code, Static storage are easy:
they never grow or shrink

• Stack space is also easy:
stack frames are created and
destroyed in last-in, first-out (LIFO)
order

• Managing the heap is tricky:
memory can be allocated / deallocated
at any time

CS 61C L06 Memory Management (11) A Carle, Summer 2006 © UCB

Heap Management Requirements

• Want malloc() and free() to run
quickly.

• Want minimal memory overhead
• Want to avoid fragmentation –
when most of our free memory is in
many small chunks

• In this case, we might have many free
bytes but not be able to satisfy a large
request since the free bytes are not
contiguous in memory.

CS 61C L06 Memory Management (12) A Carle, Summer 2006 © UCB

Heap Management

• An example
• Request R1 for 100
bytes

• Request R2 for 1 byte
• Memory from R1 is
freed

• Request R3 for 50
bytes

R2 (1 byte)

R1 (100 bytes)

CS 61C L06 Memory Management (13) A Carle, Summer 2006 © UCB

Heap Management

• An example
• Request R1 for 100
bytes

• Request R2 for 1 byte
• Memory from R1 is
freed

• Request R3 for 50
bytes

R2 (1 byte)

R3?

R3?

CS 61C L06 Memory Management (14) A Carle, Summer 2006 © UCB

K&R Malloc/Free Implementation

• From Section 8.7 of K&R
• Code in the book uses some C language
features we haven’t discussed and is
written in a very terse style, don’t worry if
you can’t decipher the code

• Each block of memory is preceded by
a header that has two fields:
size of the block and
a pointer to the next block

• All free blocks are kept in a linked list,
the pointer field is unused in an
allocated block

CS 61C L06 Memory Management (15) A Carle, Summer 2006 © UCB

K&R Implementation

•malloc() searches the free list for a
block that is big enough. If none is
found, more memory is requested from
the operating system.

•free() checks if the blocks adjacent to
the freed block are also free

• If so, adjacent free blocks are merged
(coalesced) into a single, larger free block

• Otherwise, the freed block is just added to
the free list

CS 61C L06 Memory Management (16) A Carle, Summer 2006 © UCB

Choosing a block in malloc()

• If there are multiple free blocks of
memory that are big enough for some
request, how do we choose which one
to use?

• best-fit: choose the smallest block that is
big enough for the request

• first-fit: choose the first block we see
that is big enough

• next-fit: like first-fit but remember where
we finished searching and resume
searching from there

CS 61C L06 Memory Management (17) A Carle, Summer 2006 © UCB

PRS Round 1

• A con of first-fit is that it results in many small
blocks at the beginning of the free list

• A con of next-fit is it is slower than first-fit,
since it takes longer in steady state to find a
match

• A con of best-fit is that it leaves lots of tiny
blocks

CS 61C L06 Memory Management (18) A Carle, Summer 2006 © UCB

Tradeoffs of allocation policies

• Best-fit: Tries to limit fragmentation
but at the cost of time (must examine
all free blocks for each malloc).
Leaves lots of small blocks (why?)

• First-fit: Quicker than best-fit (why?)
but potentially more fragmentation.
Tends to concentrate small blocks at
the beginning of the free list (why?)

• Next-fit: Does not concentrate small
blocks at front like first-fit, should be
faster as a result.

CS 61C L06 Memory Management (19) A Carle, Summer 2006 © UCB

Administrivia

• HW2 Due Today
• HW3 Out, Due Monday
• Proj1 Coming Soon

CS 61C L06 Memory Management (20) A Carle, Summer 2006 © UCB

Slab Allocator

• A different approach to memory
management (used in GNU libc)

• Divide blocks in to “large” and “small”
by picking an arbitrary threshold size.
Blocks larger than this threshold are
managed with a freelist (as before).

• For small blocks, allocate blocks in
sizes that are powers of 2

• e.g., if program wants to allocate 20
bytes, actually give it 32 bytes

CS 61C L06 Memory Management (21) A Carle, Summer 2006 © UCB

Slab Allocator

• Bookkeeping for small blocks is
relatively easy: just use a bitmap for
each range of blocks of the same size

• Allocating is easy and fast: compute
the size of the block to allocate and
find a free bit in the corresponding
bitmap.

• Freeing is also easy and fast: figure
out which slab the address belongs to
and clear the corresponding bit.

CS 61C L06 Memory Management (22) A Carle, Summer 2006 © UCB

Slab Allocator

16 byte blocks:

32 byte blocks:

64 byte blocks:

16 byte block bitmap: 11011000

32 byte block bitmap: 0111

64 byte block bitmap: 00

CS 61C L06 Memory Management (23) A Carle, Summer 2006 © UCB

Slab Allocator Tradeoffs

• Extremely fast for small blocks.
• Slower for large blocks

• But presumably the program will take
more time to do something with a large
block so the overhead is not as critical.

• Minimal space overhead
• No fragmentation (as we defined it
before) for small blocks, but still have
wasted space!

CS 61C L06 Memory Management (24) A Carle, Summer 2006 © UCB

Internal vs. External Fragmentation

• With the slab allocator, difference
between requested size and next
power of 2 is wasted

• e.g., if program wants to allocate 20
bytes and we give it a 32 byte block, 12
bytes are unused.

• We also refer to this as fragmentation,
but call it internal fragmentation since
the wasted space is actually within an
allocated block.

• External fragmentation: wasted space
between allocated blocks.

CS 61C L06 Memory Management (25) A Carle, Summer 2006 © UCB

Buddy System

• Yet another memory management
technique (used in Linux kernel)

• Like GNU’s “slab allocator”, but only
allocate blocks in sizes that are
powers of 2 (internal fragmentation is
possible)

• Keep separate free lists for each size
• e.g., separate free lists for 16 byte, 32
byte, 64 byte blocks, etc.

CS 61C L06 Memory Management (26) A Carle, Summer 2006 © UCB

Buddy System
• If no free block of size n is available, find a
block of size 2n and split it in to two
blocks of size n

• When a block of size n is freed, if its
neighbor of size n is also free, coalesce
the blocks in to a single block of size 2n

• Buddy is block in other half larger block

• Same speed advantages as slab allocator

buddies NOT buddies

CS 61C L06 Memory Management (27) A Carle, Summer 2006 © UCB

Allocation Schemes

•So which memory management
scheme (K&R, slab, buddy) is
best?

•There is no single best approach for
every application.

•Different applications have different
allocation / deallocation patterns.

•A scheme that works well for one
application may work poorly for
another application.

CS 61C L06 Memory Management (28) A Carle, Summer 2006 © UCB

Automatic Memory Management

• Dynamically allocated memory is
difficult to track – why not track it
automatically?

• If we can keep track of what memory is
in use, we can reclaim everything else.

• Unreachable memory is called garbage,
the process of reclaiming it is called
garbage collection.

• So how do we track what is in use?

CS 61C L06 Memory Management (29) A Carle, Summer 2006 © UCB

Tracking Memory Usage

• Techniques depend heavily on the
programming language and rely on
help from the compiler.

• Start with all pointers in global
variables and local variables (root set).

• Recursively examine dynamically
allocated objects we see a pointer to.

• We can do this in constant space by
reversing the pointers on the way down

• How do we recursively find pointers in
dynamically allocated memory?

CS 61C L06 Memory Management (30) A Carle, Summer 2006 © UCB

Tracking Memory Usage
• Again, it depends heavily on the
programming language and compiler.

• Could have only a single type of
dynamically allocated object in memory

• E.g., simple Lisp/Scheme system with only
cons cells (61A’s Scheme not “simple”)

• Could use a strongly typed language
(e.g., Java)

• Don’t allow conversion (casting) between
arbitrary types.

• C/C++ are not strongly typed.

• Here are 3 schemes to collect garbage

CS 61C L06 Memory Management (31) A Carle, Summer 2006 © UCB

Scheme 1: Reference Counting

• For every chunk of dynamically
allocated memory, keep a count of
number of pointers that point to it.

• When the count reaches 0, reclaim.
• Simple assignment statements can
result in a lot of work, since may
update reference counts of many
items

CS 61C L06 Memory Management (32) A Carle, Summer 2006 © UCB

Reference Counting Example

• For every chunk of dynamically
allocated memory, keep a count of
number of pointers that point to it.

• When the count reaches 0, reclaim.
int *p1, *p2;
p1 = malloc(sizeof(int));
p2 = malloc(sizeof(int));
*p1 = 10; *p2 = 20;

p1

p2

1020Reference
count = 1

Reference
count = 1

CS 61C L06 Memory Management (33) A Carle, Summer 2006 © UCB

Reference Counting Example

• For every chunk of dynamically
allocated memory, keep a count of
number of pointers that point to it.

• When the count reaches 0, reclaim.
int *p1, *p2;
p1 = malloc(sizeof(int));
p2 = malloc(sizeof(int));
*p1 = 10; *p2 = 20;
p1 = p2;

p1

p2

1020Reference
count = 2

Reference
count = 0

CS 61C L06 Memory Management (34) A Carle, Summer 2006 © UCB

Reference Counting (p1, p2 are pointers)

p1 = p2;

• Increment reference count for p2
• If p1 held a valid value, decrement its
reference count

• If the reference count for p1 is now 0,
reclaim the storage it points to.

• If the storage pointed to by p1 held other
pointers, decrement all of their reference
counts, and so on…

• Must also decrement reference count
when local variables cease to exist.

CS 61C L06 Memory Management (35) A Carle, Summer 2006 © UCB

Reference Counting Flaws

• Extra overhead added to assignments,
as well as ending a block of code.

• Does not work for circular structures!
• E.g., doubly linked list:

X Y Z

CS 61C L06 Memory Management (36) A Carle, Summer 2006 © UCB

Scheme 2: Mark and Sweep Garbage Col.

• Keep allocating new memory until
memory is exhausted, then try to find
unused memory.

• Consider objects in heap a graph, chunks
of memory (objects) are graph nodes,
pointers to memory are graph edges.

• Edge from A to B => A stores pointer to B

• Can start with the root set, perform a
graph traversal, find all usable memory!

• 2 Phases: (1) Mark used nodes;(2) Sweep
free ones, returning list of free nodes

CS 61C L06 Memory Management (37) A Carle, Summer 2006 © UCB

Mark and Sweep

• Graph traversal is relatively easy to
implement recursively

°But with recursion, state is stored on
the execution stack.

° Garbage collection is invoked when not
much memory left

°As before, we could traverse in
constant space (by reversing pointers)

void traverse(struct graph_node *node) {
/* visit this node */
foreach child in node->children {

traverse(child);
}

}

CS 61C L06 Memory Management (38) A Carle, Summer 2006 © UCB

Scheme 3: Copying Garbage Collection

• Divide memory into two spaces, only
one in use at any time.

• When active space is exhausted,
traverse the active space, copying all
objects to the other space, then make
the new space active and continue.

• Only reachable objects are copied!

• Use “forwarding pointers” to keep
consistency

• Simple solution to avoiding having to have a
table of old and new addresses, and to mark
objects already copied (see bonus slides)

CS 61C L06 Memory Management (39) A Carle, Summer 2006 © UCB

PRS Round 2

A. Of {K&R, Slab, Buddy}, there is no
best (it depends on the problem).

B. Since automatic garbage collection
can occur any time, it is more
difficult to measure the execution
time of a Java program vs. a C
program.

C. We don’t have automatic garbage
collection in C because of efficiency.

CS 61C L06 Memory Management (40) A Carle, Summer 2006 © UCB

Summary (1/2)
• C has 3 pools of memory

• Static storage: global variable storage,
basically permanent, entire program run

• The Stack: local variable storage,
parameters, return address

• The Heap (dynamic storage): malloc()
grabs space from here, free() returns it.

•malloc() handles free space with
freelist. Three different ways to find free
space when given a request:

• First fit (find first one that’s free)
• Next fit (same as first, but remembers
where left off)

• Best fit (finds most “snug” free space)

CS 61C L06 Memory Management (41) A Carle, Summer 2006 © UCB

Summary (2/2)
• Several techniques for managing heap w/
malloc/free: best-, first-, next-fit, slab,buddy

• 2 types of memory fragmentation: internal &
external; all suffer from some kind of frag.

• Each technique has strengths and
weaknesses, none is definitively best

• Automatic memory management relieves
programmer from managing memory.

• All require help from language and compiler
• Reference Count: not for circular structures
• Mark and Sweep: complicated and slow, works
• Copying: move active objects back and forth

