
CS 61C L07 MIPS Intro (1) A Carle, Summer 2006 © UCB

inst.eecs.berkeley.edu/~cs61c/su06
CS61C : Machine Structures

Lecture #6: Intro to MIPS

2006-07-06

Andy Carle

CS 61C L07 MIPS Intro (2) A Carle, Summer 2006 © UCB

Buddy System Review
• Legend: FREE ALLOCATED SPLIT

128: 0

64: 00

32: 0010

16: 00000010
000 001 010 011 100 101 110 111

Initial State Free(001) Free(000) Free(111) Malloc(16)

1 Kudos to Kurt Meinz for
these fine slides

CS 61C L07 MIPS Intro (3) A Carle, Summer 2006 © UCB

Buddy System
• Legend: FREE ALLOCATED SPLIT

128: 0

64: 00

32: 0010

16: 01000010
000 001 010 011 100 101 110 111

Initial State Free(001) Free(000) Free(111) Malloc(16)

1

CS 61C L07 MIPS Intro (4) A Carle, Summer 2006 © UCB

Buddy System
• Legend: FREE ALLOCATED SPLIT

128: 0

64: 00

32: 0010

16: 11000010
000 001 010 011 100 101 110 111

Initial State Free(001) Free(000) Free(111) Malloc(16)

1

CS 61C L07 MIPS Intro (5) A Carle, Summer 2006 © UCB

Buddy System
• Legend: FREE ALLOCATED SPLIT

128: 0

64: 00

32: 1010

16: 00000010
000 001 010 011 100 101 110 111

Initial State Free(001) Free(000) Free(111) Malloc(16)

2

CS 61C L07 MIPS Intro (6) A Carle, Summer 2006 © UCB

Buddy System
• Legend: FREE ALLOCATED SPLIT

128: 0

64: 00

32: 1010

16: 00000011
000 001 010 011 100 101 110 111

Initial State Free(001) Free(000) Free(111) Malloc(16)

1

CS 61C L07 MIPS Intro (7) A Carle, Summer 2006 © UCB

Buddy System
• Legend: FREE ALLOCATED SPLIT

128: 0

64: 00

32: 1011

16: 00000000
000 001 010 011 100 101 110 111

Initial State Free(001) Free(000) Free(111) Malloc(16)

2

CS 61C L07 MIPS Intro (8) A Carle, Summer 2006 © UCB

Buddy System
• Legend: FREE ALLOCATED SPLIT

128: 0

64: 01

32: 1000

16: 00000000
000 001 010 011 100 101 110 111

Initial State Free(001) Free(000) Free(111) Malloc(16)

3

CS 61C L07 MIPS Intro (9) A Carle, Summer 2006 © UCB

Buddy System
• Legend: FREE ALLOCATED SPLIT

128: 0

64: 01

32: 0000

16: 11000000
000 001 010 011 100 101 110 111

Initial State Free(001) Free(000) Free(111) Malloc(16)

1

CS 61C L07 MIPS Intro (10) A Carle, Summer 2006 © UCB

Buddy System
• Legend: FREE ALLOCATED SPLIT

128: 0

64: 01

32: 0000

16: 01000000
000 001 010 011 100 101 110 111

Initial State Free(001) Free(000) Free(111) Malloc(16)

2

CS 61C L07 MIPS Intro (11) A Carle, Summer 2006 © UCB

Tracking Memory Usage
• Depends heavily on the programming
language and compiler.

• Could have only a single type of
dynamically allocated object in memory

• E.g., simple Lisp/Scheme system with only
cons cells (61A’s Scheme not “simple”)

• Could use a strongly typed language
(e.g., Java)

• Don’t allow conversion (casting) between
arbitrary types.

• C/C++ are not strongly typed.

• Here are 3 schemes to collect garbage

CS 61C L07 MIPS Intro (12) A Carle, Summer 2006 © UCB

Scheme 1: Reference Counting

• For every chunk of dynamically
allocated memory, keep a count of
number of pointers that point to it.

• When the count reaches 0, reclaim.
• Simple assignment statements can
result in a lot of work, since may
update reference counts of many
items

CS 61C L07 MIPS Intro (13) A Carle, Summer 2006 © UCB

Reference Counting Example

• For every chunk of dynamically
allocated memory, keep a count of
number of pointers that point to it.

• When the count reaches 0, reclaim.
int *p1, *p2;
p1 = malloc(sizeof(int));
p2 = malloc(sizeof(int));
*p1 = 10; *p2 = 20;

p1

p2

1020Reference
count = 1

Reference
count = 1

CS 61C L07 MIPS Intro (14) A Carle, Summer 2006 © UCB

Reference Counting Example

• For every chunk of dynamically
allocated memory, keep a count of
number of pointers that point to it.

• When the count reaches 0, reclaim.
int *p1, *p2;
p1 = malloc(sizeof(int));
p2 = malloc(sizeof(int));
*p1 = 10; *p2 = 20;
p1 = p2;

p1

p2

1020Reference
count = 2

Reference
count = 0

CS 61C L07 MIPS Intro (15) A Carle, Summer 2006 © UCB

Reference Counting (p1, p2 are pointers)

p1 = p2;

• Increment reference count for p2
• If p1 held a valid value, decrement its
reference count

• If the reference count for p1 is now 0,
reclaim the storage it points to.

• If the storage pointed to by p1 held other
pointers, decrement all of their reference
counts, and so on…

• Must also decrement reference count
when local variables cease to exist.

CS 61C L07 MIPS Intro (16) A Carle, Summer 2006 © UCB

Reference Counting Flaws

• Extra overhead added to assignments,
as well as ending a block of code.

• Does not work for circular structures!
• E.g., doubly linked list:

X Y Z

CS 61C L07 MIPS Intro (17) A Carle, Summer 2006 © UCB

Scheme 2: Mark and Sweep Garbage Col.

• Keep allocating new memory until
memory is exhausted, then try to find
unused memory.

• Consider objects in heap a graph, chunks
of memory (objects) are graph nodes,
pointers to memory are graph edges.

• Edge from A to B => A stores pointer to B

• Can start with the root set, perform a
graph traversal, find all usable memory!

• 2 Phases: (1) Mark used nodes;(2) Sweep
free ones, returning list of free nodes

CS 61C L07 MIPS Intro (18) A Carle, Summer 2006 © UCB

Mark and Sweep

• Graph traversal is relatively easy to
implement recursively

°But with recursion, state is stored on
the execution stack.

°Garbage collection is invoked when not
much memory left

°As before, we could traverse in
constant space (by reversing pointers)

void traverse(struct graph_node *node) {
/* visit this node */
foreach child in node->children {

traverse(child);
}

}

CS 61C L07 MIPS Intro (19) A Carle, Summer 2006 © UCB

Scheme 3: Copying Garbage Collection

• Divide memory into two spaces, only
one in use at any time.

• When active space is exhausted,
traverse the active space, copying all
objects to the other space, then make
the new space active and continue.

• Only reachable objects are copied!

• Use “forwarding pointers” to keep
consistency

• Simple solution to avoiding having to have a
table of old and new addresses, and to mark
objects already copied (see bonus slides)

CS 61C L07 MIPS Intro (20) A Carle, Summer 2006 © UCB

PRS Round 1

A. Of {K&R, Slab, Buddy}, there is no
best (it depends on the problem).

B. Since automatic garbage collection
can occur any time, it is more
difficult to measure the execution
time of a Java program vs. a C
program.

C. We don’t have automatic garbage
collection in C because of efficiency.

CS 61C L07 MIPS Intro (21) A Carle, Summer 2006 © UCB

Review
• Several techniques for managing heap w/
malloc/free: best-, first-, next-fit, slab,buddy

• 2 types of memory fragmentation: internal &
external; all suffer from some kind of frag.

• Each technique has strengths and
weaknesses, none is definitively best

• Automatic memory management relieves
programmer from managing memory.

• All require help from language and compiler
• Reference Count: not for circular structures
• Mark and Sweep: complicated and slow, works
• Copying: move active objects back and forth

CS 61C L07 MIPS Intro (22) A Carle, Summer 2006 © UCB

New Topic!

MIPS Assembly Language

CS 61C L07 MIPS Intro (23) A Carle, Summer 2006 © UCB

Assembly Language

• Basic job of a CPU: execute lots of
instructions.

• Instructions are the primitive
operations that the CPU may execute.

• Different CPUs implement different
sets of instructions. The set of
instructions a particular CPU
implements is an Instruction Set
Architecture (ISA).

• Examples: Intel 80x86 (Pentium 4),
IBM/Motorola PowerPC (Macintosh),
MIPS, Intel IA64, ...

CS 61C L07 MIPS Intro (24) A Carle, Summer 2006 © UCB

Instruction Set Architectures

• Early trend was to add more and more
instructions to new CPUs to do
elaborate operations

• VAX architecture had an instruction to
multiply polynomials!

• RISC philosophy (Cocke IBM,
Patterson, Hennessy, 1980s) –
Reduced Instruction Set Computing

• Keep the instruction set small and simple,
makes it easier to build fast hardware.

• Let software do complicated operations by
composing simpler ones.

CS 61C L07 MIPS Intro (25) A Carle, Summer 2006 © UCB

ISA Design

• Must Run Fast In Hardware
Eliminate sources of complexity.

• Symbolic Lookup fixed var names/#
• Strong typing No Typing
• Nested expressions Fixed format Inst
• Many operators small set of insts

Software Hardware

CS 61C L07 MIPS Intro (26) A Carle, Summer 2006 © UCB

MIPS Architecture
• MIPS – semiconductor company
that built one of the first
commercial RISC architectures

• We will study the MIPS architecture
in some detail in this class (also
used in upper division courses CS
152, 162, 164)

• Why MIPS instead of Intel 80x86?
• MIPS is simple, elegant. Don’t want
to get bogged down in gritty details.

• MIPS widely used in embedded apps,
x86 little used in embedded, and more
embedded computers than PCs

CS 61C L07 MIPS Intro (27) A Carle, Summer 2006 © UCB

Assembly Variables: Registers (1/4)

• Unlike HLL like C or Java, assembly
cannot use variables

• Why not? Keep Hardware Simple

• Assembly Operands are registers
• limited number of special locations built
directly into the hardware

• operations can only be performed on
these!

• Benefit: Since registers are directly in
hardware, they are very fast
(faster than 1 billionth of a second)

CS 61C L07 MIPS Intro (28) A Carle, Summer 2006 © UCB

Assembly Variables: Registers (2/4)

• Drawback: Since registers are in
hardware, there are a predetermined
number of them

• Solution: MIPS code must be very
carefully put together to efficiently use
registers

• 32 registers in MIPS
• Why just 32? Smaller is faster

• Each MIPS register is 32 bits wide
• Groups of 32 bits called a word in MIPS

CS 61C L07 MIPS Intro (29) A Carle, Summer 2006 © UCB

Assembly Variables: Registers (3/4)

• Registers are numbered from 0 to 31
• Each register can be referred to by
number or name

• Number references:
$0, $1, $2, … $30, $31

CS 61C L07 MIPS Intro (30) A Carle, Summer 2006 © UCB

Assembly Variables: Registers (4/4)

• By convention, each register also has
a name to make it easier to code

• For now:
$16 - $23 $s0 - $s7

(correspond to C variables)
$8 - $15 $t0 - $t7

(correspond to temporary variables)
Later will explain other 16 register names

• In general, use names to make your
code more readable

CS 61C L07 MIPS Intro (31) A Carle, Summer 2006 © UCB

C, Java variables vs. registers

• In C (and most High Level Languages)
variables declared first and given a type

• Example:
int fahr, celsius;
char a, b, c, d, e;

• Each variable can ONLY represent a
value of the type it was declared as
(cannot mix and match int and char
variables).

• In Assembly Language, the registers
have no type; operation determines how
register contents are treated

CS 61C L07 MIPS Intro (32) A Carle, Summer 2006 © UCB

Comments in Assembly

• Another way to make your code more
readable: comments!

• Hash (#) is used for MIPS comments
• anything from hash mark to end of line is
a comment and will be ignored

• Note: Different from C.
• C comments have format
/* comment */
so they can span many lines

CS 61C L07 MIPS Intro (33) A Carle, Summer 2006 © UCB

Assembly Instructions

• In assembly language, each statement
(called an Instruction), executes
exactly one of a short list of simple
commands

• Unlike in C (and most other High Level
Languages), each line of assembly
code contains at most 1 instruction

• Instructions are related to operations
(=, +, -, *, /) in C or Java

CS 61C L07 MIPS Intro (34) A Carle, Summer 2006 © UCB

Administrivia

• Office Hours:

• HW3 Due Monday
• Proj1 Due 7-16
• Midterm 1:

• Friday, 7/14
• Probably 11 – 2
• Room TBD

CS 61C L07 MIPS Intro (35) A Carle, Summer 2006 © UCB

MIPS Addition and Subtraction (1/4)

• Syntax of Instructions:
“<op> <dest> <src1> <src2> “
where:
op) operation by name
dest) operand getting result (“destination”)
src1) 1st operand for operation (“source1”)
src2) 2nd operand for operation (“source2”)

• Syntax is rigid:
• 1 operator, 3 operands
• Why? Keep Hardware simple via regularity

CS 61C L07 MIPS Intro (36) A Carle, Summer 2006 © UCB

Addition and Subtraction of Integers (2/4)

• Addition in Assembly
• Example: add $s0,$s1,$s2 (in MIPS)
Equivalent to: s0 = s1 + s2 (in C)

where MIPS registers $s0,$s1,$s2 are
associated with C variables s0, s1, s2

• Subtraction in Assembly
• Example: sub $s3,$s4,$s5 (in MIPS)
Equivalent to: d = e - f (in C)

where MIPS registers $s3,$s4,$s5 are
associated with C variables d, e, f

CS 61C L07 MIPS Intro (37) A Carle, Summer 2006 © UCB

Addition and Subtraction of Integers (3/4)

• How does the following C statement?
a = b + c + d - e;

• Break into multiple instructions
add $t0, $s1, $s2 # temp = b + c

add $t0, $t0, $s3 # temp = temp + d

sub $s0, $t0, $s4 # a = temp - e

• Notice: A single line of C may break up
into several lines of MIPS.

• Notice: Everything after the hash mark
on each line is ignored (comments)

CS 61C L07 MIPS Intro (38) A Carle, Summer 2006 © UCB

Addition and Subtraction of Integers (4/4)

• How do we do this?
f = (g + h) - (i + j);

• Use intermediate temporary register
add $t0,$s1,$s2 # temp = g + h

add $t1,$s3,$s4 # temp = i + j

sub $s0,$t0,$t1 # f=(g+h)-(i+j)

CS 61C L07 MIPS Intro (39) A Carle, Summer 2006 © UCB

Immediates

• Immediates are numerical constants.
• They appear often in code, so there
are special instructions for them.

• Add Immediate:
addi $s0,$s1,10 (in MIPS)
f = g + 10 (in C)

where MIPS registers $s0,$s1 are
associated with C variables f, g

• Syntax similar to add instruction,
except that last argument is a number
instead of a register.

CS 61C L07 MIPS Intro (40) A Carle, Summer 2006 © UCB

Immediates

• There is no Subtract Immediate in
MIPS: Why?

• Limit types of operations that can be
done to absolute minimum

• if an operation can be decomposed into a
simpler operation, don’t include it

•addi …, -X = subi …, X => so no subi

• addi $s0,$s1,-10 (in MIPS)
f = g - 10 (in C)

where MIPS registers $s0,$s1 are
associated with C variables f, g

CS 61C L07 MIPS Intro (41) A Carle, Summer 2006 © UCB

Register Zero
• One particular immediate, the number
zero (0), appears very often in code.

• So we define register zero ($0 or
$zero) to always have the value 0; eg
add $s0,$s1,$zero (in MIPS)
f = g (in C)

where MIPS registers $s0,$s1 are
associated with C variables f, g

• defined in hardware, so an instruction
add $zero,$zero,$s0

will not do anything!

CS 61C L07 MIPS Intro (42) A Carle, Summer 2006 © UCB

Peer Instruction Round 2

A. Types are associated with
declaration in C (normally), but
are associated with instruction
(operator) in MIPS.

B. Since there are only 8 local ($s)
and 8 temp ($t) variables, we
can’t write MIPS for C exprs that
contain > 16 vars.

C. If p (stored in $s0) were a pointer
to an array of ints, then p++;
would be addi $s0 $s0 1

CS 61C L07 MIPS Intro (43) A Carle, Summer 2006 © UCB

“And in Conclusion…”

• In MIPS Assembly Language:
• Registers replace C variables
• One Instruction (simple operation) per line
• Simpler is Better
• Smaller is Faster

• New Instructions:
add, addi, sub

• New Registers:
C Variables: $s0 - $s7
Temporary Variables: $t0 - $t9
Zero: $zero

