Andy Carle

2006-07-17
st.eecs.berkeley. edu/~cs61c/su06 CS61C : Machine Structures

Lecture \#11: Floating Point

\qquad

Review of Numbers

- Computers are made to deal with numbers
-What can we represent in \mathbf{N} bits?
- Unsigned integers:

$$
0 \text { to } 2^{N}-1
$$

- Signed Integers (Two's Complement)

$$
-2^{(N-1)} \quad \text { to } \quad 2^{(N-1)}-1
$$

.

Floating Point Representation (1/2)

- Normal format: +1.xxxxxxxxxx ${ }_{\text {two }}{ }^{*} 2^{\text {yyyy }}{ }_{\text {two }}$
- Multiple of Word Size (32 bits):

3130		
2322		
S		
Exponent		

- S represents Sign
- Exponent represents y's
-Significand represents x's

Represent numbers as small as
2.0×10^{-38} to as large as 2.0×10^{38}

Double Precision FI. Pt. Representation

- Next Multiple of Word Size (64 bits)

- Double Precision (vs. Single Precision)
- C variable declared as double
- Represent numbers almost as small as 2.0×10^{-308} to almost as large as 2.0×10^{308}
- But primary advantage is greater accuracy due to larger significand
Cal \qquad

IEEE 754 Floating Point Standard (1/4)

- Single Precision, DP similar
- Sign bit: $\quad 1$ means negative

0 means positive

- Significand:
- To pack more bits, leading 1 implicit for normalized numbers
- $1+23$ bits single, $1+52$ bits double
- Note: 0 has no leading 1, so reserve exponent value 0 just for number 0

Floating Point Representation (2/2)

-What if result too large? (> 2.0×10^{38})

- Overflow!
- Overflow \Rightarrow Exponent larger than represented in 8-bit Exponent field
-What if result too small? (>0, < 2.0×10^{-38})
- Underflow!
- Underflow \Rightarrow Negative exponent larger than represented in 8 -bit Exponent field
- How to reduce chances of overflow or underflow?
Cal

QUAD Precision FI. Pt. Representation

- Next Multiple of Word Size (128 bits)
- Unbelievable range of numbers
- Unbelievable precision (accuracy)
- This is currently being worked on
- The version in progress has 15 bits for the exponent and 112 bits for the significand

IEEE 754 Floating Point Standard (2/4)

- Kahan wanted FP numbers to be used even if no FP hardware; e.g., sort records with FP numbers using integer compares
- Could break FP number into 3 parts: compare signs, then compare exponents, then compare significands
- Wanted it to be faster, single compare if possible, especially if positive numbers
- Then want order:
- Highest order bit is sign (negative < positive)
- Exponent next, so big exponent => bigger \#

Cal Significand last: exponents same => bigger \#

IEEE 754 Floating Point Standard (3/4)

- Negative Exponent?
- 2's comp? 1.0×2^{-1} v. $1.0 \times 2^{+1}(1 / 2 \mathrm{v} .2)$
$1 / 20 \mid 1111111100000000000000000000000$

2	0	00000001	00000000000000000000000

- This notation using integer compare of 1/2 v. 2 makes $1 / 2>2$!
- Instead, pick notation 00000001 is most negative, and 11111111 is most positive
$\cdot 1.0 \times 2^{-1} \mathrm{v} .1 .0 \times 2^{+1}(1 / 2 \mathrm{v} .2)$
$1 / 20 \mid 0111111000000000000000000000000$

0	1000	0000	00000000000000000000000

Cal

?

| 0 | 0111110100000000000000000000000 |
| :--- | :--- | :--- |

Is this floating point number:
>0 ?
$=0$?
< 0 ?

Cal

Understanding the Significand (2/2)

- Method 2 (Place Values):
- Convert from scientific notation
- In decimal: $1.6732=\left(1 \times 10^{0}\right)+\left(6 \times 10^{-1}\right)+$ $\left(7 \times 10^{-2}\right)+\left(3 \times 10^{-3}\right)+\left(2 \times 10^{-4}\right)$
- In binary: $1.1001=\left(1 \times 2^{0}\right)+\left(1 \times 2^{-1}\right)+$ $\left(0 \times 2^{-2}\right)+\left(0 \times 2^{-3}\right)+\left(1 \times 2^{-4}\right)$
- Interpretation of value in each position extends beyond the decimal/binary point
- Advantage: good for quickly calculating significand value; use this method for translating FP numbers

Understanding the Significand (1/2)

- Method 1 (Fractions):
- In decimal: $\mathbf{0 . 3 4 0}_{10}=>340_{10} /{ }^{\prime}=>34_{10} 100_{10}$

$$
=34_{10} / 100_{10}
$$

- In binary: $0.110_{2}=>110_{2} / 1000_{2}=6_{10} / 8_{10}$
$\Rightarrow 11_{2} / 100_{2}=3_{10} / 4_{10}$
- Advantage: less purely numerical, more thought oriented; this method usually helps people understand the meaning of the significand better

Peer Instruction \#1

What is the decimal equivalent of this floating point number?

1) 10000001 111 00000000000000000000

Converting Decimal to FP (1/3)

- Simple Case: If denominator is an exponent of 2 ($2,4,8,16$, etc.), then it's easy.
- Show MIPS representation of $\mathbf{- 0 . 7 5}$
- $0.75=-3 / 4$
- $-11_{\text {two }} / 100_{\text {two }}=-0.11_{\text {two }}$
- Normalized to $-1.1_{\text {two }} \times 2^{-1}$
$\cdot(-1)^{\mathrm{S}} \times\left(1+\right.$ Significand) $\times 2^{(\text {Exponent-127) }}$
$\cdot(-1)^{1} \times(1+.1000000 \ldots 0000) \times 2^{(126-127)}$
1 0111111010000000000000000000000
Cal

Converting Decimal to FP (3/3)

- Fact: All rational numbers have a repeating pattern when written out in decimal.
- Fact: This still applies in binary.
-To finish conversion:
- Write out binary number with repeating pattern
- Cut it off after correct number of bits (different for single v. double precision).
- Derive Sign, Exponent and Significand fields.

Answer

What is the decimal equivalent of:

1	10000001	111000000000000	00000000
S	Exponent	Significand	

$(-1)^{\text {S }} \times\left(1+\right.$ Significand) $\times 2^{(\text {Exponent-127) }}$
$(-1)^{1} \times(1+.111) \times 2^{(129-127)}$
$-1 \times(1.111) \times 2^{(2)}$
-111.1
-7.5

Cal

Converting Decimal to FP (2/3)

- Not So Simple Case: If denominator is not an exponent of 2.
- Then we can't represent number precisely, but that's why we have so many bits in significand: for precision
- Once we have significand, normalizing a number to get the exponent is easy.
- So how do we get the significand of a never-ending number?

Example: Representing $1 / 3$ in MIPS
-1/3

$$
=0.33333 \ldots 10
$$

$=0.25+0.0625+0.015625+0.00390625+\ldots$
$=1 / 4+1 / 16+1 / 64+1 / 256+\ldots$
$=2^{-2}+2^{-4}+2^{-6}+2^{-8}+\ldots$
$=0.0101010101 \ldots 2^{*} 2^{0}$
$=1.0101010101 \ldots{ }^{*} 2^{-2}$

- Sign: 0
- Exponent = -2 + $127=125=01111101$
- Significand $=0101010101$..

Cal | 0 | 01111101 | 01010101010101010101010 |
| :---: | :---: | :---: |

Administrivia

- Project 1 Due Tonight
- HW4 will be out soon
- Midterm Results (out of 45 possible):
- Average: 31.25
- Standard Deviation: 8
- Median: 30.875
- Max: 44
- Will be handed back in discussion

Representation for $\pm \infty$

- In FP, divide by 0 should produce $\pm \infty$, not overflow.
-Why?
- OK to do further computations with ∞ E.g., X/O > Y may be a valid comparison
- Ask math majors
- IEEE 754 represents $\pm \infty$
- Most positive exponent reserved for ∞
- Significands all zeroes

Special Numbers

-What have we defined so far?
(Single Precision)

Exponent	Significand	Object
0	0	0
0	$\underline{\text { nonzero }}$	$\underline{? ? ?}$
$1-254$	anything	$+/-$ fl. pt. \#
255	0	$+/-\infty$
255	nonzero	$\underline{? ? ?}$

- Professor Kahan had clever ideas;
"Waste not, want not"
- Exp $=0,255$ \& Sig! $=0$...
"Father" of the Floating point standard
IEEE Standard 754 for Binary Floating-Point Arithmetic.

Prof. Kahan
www.cs.berkeley.edu/~wkahan/ .../ieee754status/754story.html
Cul

Representation for 0

- Represent 0 ?
- exponent all zeroes
- significand all zeroes
- What about sign?
-+0: 00000000000000000000000000000000
- -0: 10000000000000000000000000000000
-Why two zeroes?
- Helps in some limit comparisons
- Ask math majors

Cal

Representation for Not a Number

-What is sqrt(-4.0) or 0/0?

- If ∞ not an error, these shouldn't be either.
- Called Not a Number (NaN)
- Exponent $=255$, Significand nonzero
- Why is this useful?
- Hope NaNs help with debugging?
- They contaminate: $\mathrm{op}(\mathrm{NaN}, \mathrm{X})=\mathrm{NaN}$

Representation for Denorms (1/2)

- Problem: There's a gap among representable FP numbers around 0
- Smallest representable pos num:

$$
a=1.0 \ldots 2^{*} 2^{-126}=2^{-126}
$$

- Second smallest representable pos num:

$$
b=1.000 \ldots . . .1_{2} * 2^{-126}=2^{-126}+2^{-149}
$$

$\mathrm{a}-\mathrm{0}=\mathbf{2}^{-126}$ Normalization and implicit 1 is to blame!
Gaps!
$-\infty \cdot \underset{0}{1} \bigcirc_{\mathbf{a}}^{\mathbf{b}}+\infty$

Peer Instruction 2

1. Converting float \rightarrow int \rightarrow float produces same float number
2. Converting int -> float -> int produces same int number
3. FP add is associative:
$(x+y)+z=x+(y+z)$

Representation for Denorms (2/2)

- Solution:
-We still haven't used Exponent = 0, Significand nonzero
- Denormalized number: no leading 1, implicit exponent $=-126$.
- Smallest representable pos num: $a=2^{-149}$
- Second smallest representable pos num: $\mathrm{b}=2^{-148}$

Cal
"And in conclusion..."

- Floating Point numbers approximate values that we want to use.
- IEEE 754 Floating Point Standard is most widely accepted attempt to standardize interpretation of such numbers
- Every desktop or server computer sold since ~1997 follows these conventions
- Summary (single precision):

$3130 \quad 2322$	
S Exponent	Significand
1 bit 8 bits	23 bits
$\cdot(-1)^{\text {S }} \times\left(1+\right.$ Significand) $\times 2^{\text {(Exponent-127) }}$	
- Double p	ical, bias of 1023

Cil - Double precision identical, bias of 1023

