inst.eecs.berkeley.edu/~cs61c/su06 **CS61C : Machine Structures**

Lecture #11: Floating Point

2006-07-17

Andy Carle

Quote of the day

"95% of the folks out there are **completely clueless** about floating-point."

James Gosling **Sun Fellow Java Inventor** 1998-02-28

A Carle, Summer 2006 © UCB

CS 61C L11 Floating Point (2)

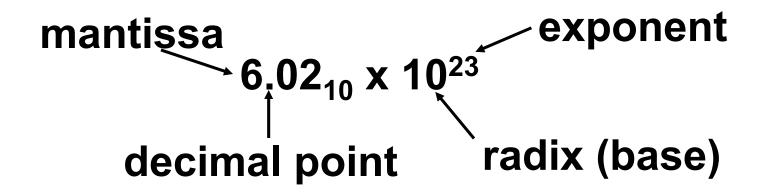
Review of Numbers

- Computers are made to deal with numbers
- What can we represent in N bits?
 - Unsigned integers:
 - 0 to $2^{N} 1$ • Signed Integers (Two's Complement) $-2^{(N-1)}$ to $2^{(N-1)} - 1$

Other Numbers

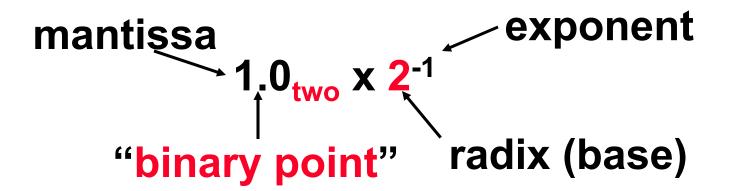
- What about other numbers?
 - Very large numbers? (seconds/century) 3,155,760,000₁₀ (3.15576₁₀ x 10⁹)
 - Very small numbers? (atomic diameter) $0.0000001_{10} (1.0_{10} \times 10^{-8})$
 - Rationals (repeating pattern) 2/3 (0.6666666666...)
 - Irrationals
 2^{1/2}
- (1.414213562373. . .)
- Transcendentals e (2.718...), π (3.141...)

Scientific Notation (in Decimal)



- Normalized form: no leadings 0s (exactly one digit to left of decimal point)
- Alternatives to representing 1/1,000,000,000
 - Normalized: 1.0 x 10⁻⁹
 - Not normalized: 0.1 x 10⁻⁸,10.0 x 10⁻¹⁰

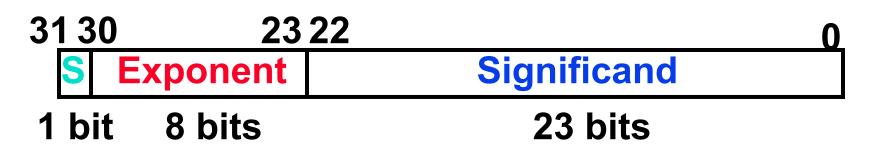
Scientific Notation (in Binary)



- Normalized mantissa always has exactly one "1" before the point.
- Computer arithmetic that supports it called <u>floating point</u>, because it represents numbers where binary point is not fixed, as it is for integers
- Declare such variable in C as float

Floating Point Representation (1/2)

- Multiple of Word Size (32 bits):



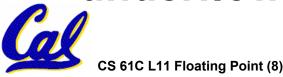
- S represents Sign
- Exponent represents y's
- Significand represents x's

Represent numbers as small as 2.0 x 10⁻³⁸ to as large as 2.0 x 10³⁸

A Carle, Summer 2006 © UCB

Floating Point Representation (2/2)

- What if result too large? (> 2.0x10³⁸)
 - Overflow!
 - Overflow ⇒ Exponent larger than represented in 8-bit Exponent field
- What if result too small? (>0, < 2.0x10⁻³⁸)
 - Underflow!
 - Underflow
 ⇒ Negative exponent larger than represented in 8-bit Exponent field
- How to reduce chances of overflow or underflow?



Double Precision FI. Pt. Representation

Next Multiple of Word Size (64 bits)

3 <u>1 30</u>	20 19 (0
S	Exponent	Significand	
1 bit	11 bits	20 bits	
	Significand (cont'd)		

32 bits

- Double Precision (vs. Single Precision)
 - C variable declared as double
 - Represent numbers almost as small as 2.0 x 10⁻³⁰⁸ to almost as large as 2.0 x 10³⁰⁸
 - But primary advantage is greater accuracy
 due to larger significand

QUAD Precision FI. Pt. Representation

- Next Multiple of Word Size (128 bits)
- Unbelievable range of numbers
- Unbelievable precision (accuracy)
- This is currently being worked on
- The version in progress has 15 bits for the exponent and 112 bits for the significand

IEEE 754 Floating Point Standard (1/4)

- Single Precision, DP similar
- Sign bit: 1 means negative 0 means positive
- Significand:
 - To pack more bits, leading 1 implicit for normalized numbers
 - •1 + 23 bits single, 1 + 52 bits double
- Note: 0 has no leading 1, so reserve exponent value 0 just for number 0

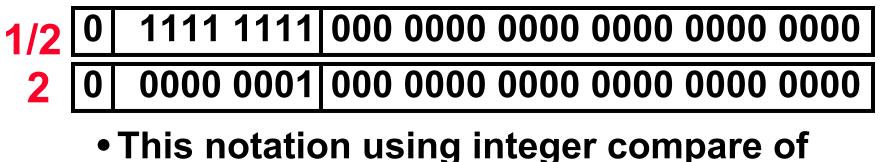
IEEE 754 Floating Point Standard (2/4)

- Kahan wanted FP numbers to be used even if no FP hardware; e.g., sort records with FP numbers using integer compares
- Could break FP number into 3 parts: compare signs, then compare exponents, then compare significands
- Wanted it to be faster, single compare if possible, especially if positive numbers
- Then want order:
 - Highest order bit is sign (negative < positive)
 - Exponent next, so big exponent => bigger #

Significand last: exponents same => bigger #

IEEE 754 Floating Point Standard (3/4)

- Negative Exponent?
 - 2's comp? 1.0 x 2⁻¹ v. 1.0 x2⁺¹ (1/2 v. 2)



- 1/2 v. 2 makes 1/2 > 2!
- Instead, pick notation 0000 0001 is most negative, and 1111 1111 is most positive

0111 1110 000 0000 0000 0000 0000 0000

1000 0000 000 0000 0000 0000 0000 0000

0

IEEE 754 Floating Point Standard (4/4)

- Called <u>Biased Notation</u>, where bias is number subtracted to get real number
 - IEEE 754 uses bias of 127 for single prec.
 - Subtract 127 from Exponent field to get actual value for exponent
- Summary (single precision):

<u>31 30</u>	23	22	0
S E	xponent	Significand	
1 bit	8 bits	23 bits	

- (-1)^S x (1 + Significand) x 2^(Exponent-127)
 - Double precision identical, except with exponent bias of 1023

0 0111 1101 0000 0000 0000 0000 0000 0000 000

Is this floating point number:

> 0? = 0? < 0?

Understanding the Significand (1/2)

- Method 1 (Fractions):
 - In decimal: $0.340_{10} => 340_{10}/1000_{10}$ => $34_{10}/100_{10}$
 - In binary: $0.110_2 \Rightarrow 110_2/1000_2 = 6_{10}/8_{10}$ => $11_2/100_2 = 3_{10}/4_{10}$
 - Advantage: less purely numerical, more thought oriented; this method usually helps people understand the meaning of the significand better

Understanding the Significand (2/2)

- Method 2 (Place Values):
 - Convert from scientific notation
 - In decimal: $1.6732 = (1x10^{0}) + (6x10^{-1}) + (7x10^{-2}) + (3x10^{-3}) + (2x10^{-4})$
 - In binary: $1.1001 = (1x2^{0}) + (1x2^{-1}) + (0x2^{-2}) + (0x2^{-3}) + (1x2^{-4})$
 - Interpretation of value in each position extends beyond the decimal/binary point
 - Advantage: good for quickly calculating significand value; use this method for translating FP numbers

Example: Converting Binary FP to Decimal

- 0 0110 1000 101 0101 0100 0011 0100 0010
- Sign: 0 => pøsitive
- Exponent:
 - 0110 1000_{two} = 104_{ten}
 - Bias adjustment: 104 127 = -23
- Significand:
 - 1 + 1x2⁻¹+ 0x2⁻² + 1x2⁻³ + 0x2⁻⁴ + 1x2⁻⁵ +... =1+2⁻¹+2⁻³ +2⁻⁵ +2⁻⁷ +2⁻⁹ +2⁻¹⁴ +2⁻¹⁵ +2⁻¹⁷ +2⁻²² = 1.0_{ten} + 0.666115_{ten}

• Represents: 1.666115_{ten}*2⁻²³ ~ 1.986*10⁻⁷ (about 2/10,000,000) A Carle, Summer 2006 © UCB **Peer Instruction #1**

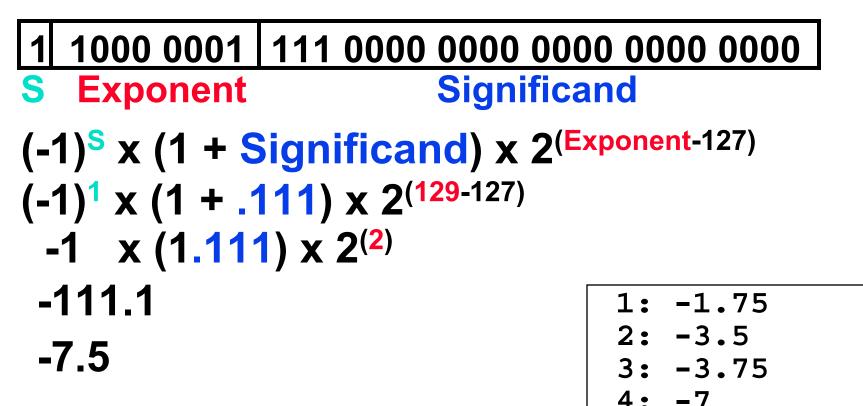
What is the decimal equivalent of this floating point number?

1 1000 0001 111 0000 0000 0000 0000 0000

A Carle, Summer 2006 © UCB

Answer

What is the decimal equivalent of:



A Carle, Summer 2006 © UCB

-7 * 2^129

 -129×2^{7}

-7.5

-15

Converting Decimal to FP (1/3)

- Simple Case: If denominator is an exponent of 2 (2, 4, 8, 16, etc.), then it's easy.
- Show MIPS representation of -0.75
 - **-0**.75 = **-**3/4
 - $-11_{two}/100_{two} = -0.11_{two}$
 - Normalized to -1.1_{two} x 2⁻¹
 - (-1)^S x (1 + Significand) x 2^(Exponent-127)
 - $(-1)^1 \ge (1 + .100\ 0000\ ...\ 0000) \ge 2^{(126-127)}$

1 0111 1110 100 0000 0000 0000 0000 0000

Converting Decimal to FP (2/3)

- Not So Simple Case: If denominator is not an exponent of 2.
 - Then we can't represent number precisely, but that's why we have so many bits in significand: for precision
 - Once we have significand, normalizing a number to get the exponent is easy.
 - So how do we get the significand of a never-ending number?

Converting Decimal to FP (3/3)

- Fact: All rational numbers have a repeating pattern when written out in decimal.
- Fact: This still applies in binary.
- To finish conversion:
 - Write out binary number with repeating pattern.
 - Cut it off after correct number of bits (different for single v. double precision).
 - Derive Sign, Exponent and Significand fields.

Example: Representing 1/3 in MIPS

- 1/3
 - = **0**.33333...₁₀
 - = 0.25 + 0.0625 + 0.015625 + 0.00390625 + ...
 - = 1/4 + 1/16 + 1/64 + 1/256 + ...
 - $= 2^{-2} + 2^{-4} + 2^{-6} + 2^{-8} + \dots$
 - = 0.0101010101... ₂ * 2⁰
 - = 1.0101010101...₂ * 2⁻²
 - Sign: 0
 - Exponent = -2 + 127 = 125 = 01111101
 - Significand = 0101010101...

Administrivia

- Project 1 Due Tonight
- HW4 will be out soon
- Midterm Results (out of 45 possible):
 - Average: 31.25
 - Standard Deviation: 8
 - Median: 30.875
 - Max: 44
 - Will be handed back in discussion

"Father" of the Floating point standard

Prof. Kahan

www.cs.berkeley.edu/~wkahan/ .../ieee754status/754story.html

CS 61C L11 Floating Point (26)

Representation for ± ∞

- In FP, divide by 0 should produce ± ∞, not overflow.
- •Why?
 - OK to do further computations with ∞
 E.g., X/0 > Y may be a valid comparison
 - Ask math majors
- IEEE 754 represents ± ∞
 - Most positive exponent reserved for ∞
 - Significands all zeroes

Representation for 0

- Represent 0?
 - exponent all zeroes
 - significand all zeroes
 - What about sign?

 - -0: 1 0000000 00000000000000000000000
- Why two zeroes?
 - Helps in some limit comparisons
 - Ask math majors

Special Numbers

• What have we defined so far? (Single Precision)

Exponent	Significand	Object
0	0	0
0	<u>nonzero</u>	<u>???</u>
1-254	anything	+/- fl. pt. #
255	0	+/- ∞
255	<u>nonzero</u>	<u>???</u>

Professor Kahan had clever ideas;
 "Waste not, want not"

Representation for Not a Number

- •What is sqrt(-4.0) or 0/0?
 - If ∞ not an error, these shouldn't be either.
 - Called <u>Not a N</u>umber (NaN)
 - Exponent = 255, Significand nonzero
- Why is this useful?
 - Hope NaNs help with debugging?
 - They contaminate: op(NaN,X) = NaN

Representation for Denorms (1/2)

- Problem: There's a gap among representable FP numbers around 0
 - Smallest representable pos num:

 $a = 1.0..._{2} * 2^{-126} = 2^{-126}$

Second smallest representable pos num:

$$b = 1.000....1_{2} * 2^{-126} = 2^{-126} + 2^{-149}$$

Normalization and implicit 1 is to blame!

$$-\infty \leftarrow \cdots \leftarrow \bigcup_{i \to 0} b + \infty$$

Representation for Denorms (2/2)

• Solution:

- We still haven't used Exponent = 0, Significand nonzero
- Denormalized number: no leading 1, implicit exponent = -126.
- Smallest representable pos num:

• Second smallest representable pos num: b = 2⁻¹⁴⁸

Peer Instruction 2

- Converting float -> int -> float produces same float number
- 2. Converting int -> float -> int produces same int number
- 3. FP add is associative: (x+y)+z = x+(y+z)

"And in conclusion..."

- Floating Point numbers <u>approximate</u> values that we want to use.
- IEEE 754 Floating Point Standard is most widely accepted attempt to standardize interpretation of such numbers
 - Every desktop or server computer sold since ~1997 follows these conventions
- Summary (single precision):

<u>313</u>	30 23	22 0
S	Exponent	Significand
1 b	it 8 bits	23 bits

- (-1)^S x (1 + Significand) x 2^(Exponent-127)
 - Double precision identical, bias of 1023

S 61C L11 Floating Point (34)