
CS 61C L12 Pseudo (1) A Carle, Summer 2006 © UCB

inst.eecs.berkeley.edu/~cs61c/su06
CS61C : Machine Structures

Lecture #12: FP II & Pseudo Instructions

2006-07-18

Andy Carle
CS 61C L12 Pseudo (2) A Carle, Summer 2006 © UCB

FP Review
• Floating Point numbers approximate
values that we want to use.

• IEEE 754 Floating Point Standard is most
widely accepted attempt to standardize
interpretation of such numbers
• Every desktop or server computer sold since
~1997 follows these conventions

• Summary (single precision):
031

S Exponent
30 23 22

Significand
1 bit 8 bits 23 bits
• (-1)S x (1 + Significand) x 2(Exponent-127)

• Double precision identical, bias of 1023

CS 61C L12 Pseudo (3) A Carle, Summer 2006 © UCB

Representation for Denorms (1/3)
• Problem: There’s a gap among
representable FP numbers around 0

• Smallest representable pos num:
a = 1.0… 2 * 2-126 = 2-126

• Second smallest representable pos num:
b = 1.000……1 2 * 2-126 = 2-126 + 2-149

a - 0 = 2-126

b - a = 2-149

b
a0

+-
Gaps!

Normalization
and implicit 1
is to blame!

CS 61C L12 Pseudo (4) A Carle, Summer 2006 © UCB

Representation for Denorms (2/3)

• Solution:
• We still haven’t used Exponent = 0,
Significand nonzero

• Denormalized number: no leading 1,
implicit exponent = -126.

• Smallest representable pos num:
a = 2-149

• Second smallest representable pos num:
b = 2-148

0
+-

CS 61C L12 Pseudo (5) A Carle, Summer 2006 © UCB

Representation for Denorms (3/3)

• Normal FP equation:
• (-1)S x (1 + Significand) x 2(Exponent-127)

• If (fp.exp == 0 and fp.signifcant != 0)
• Denorm
• (-1)S x (0 + Significand) x 2(-126)

CS 61C L12 Pseudo (6) A Carle, Summer 2006 © UCB

IEEE Four Rounding Modes

• Math on real numbers ⇒ we worry
about rounding to fit result in the
significant field.

• FP hardware carries 2 extra bits of
precision, and rounds for proper value

• Rounding occurs when converting…
• double to single precision
• floating point # to an integer

CS 61C L12 Pseudo (7) A Carle, Summer 2006 © UCB

IEEE Four Rounding Modes

• Round towards + ∞
• ALWAYS round “up”: 2.1 ⇒ 3, -2.1 ⇒ -2

• Round towards - ∞
• ALWAYS round “down”: 1.9 ⇒ 1, -1.9 ⇒ -2

• Truncate
• Just drop the last bits (round towards 0)

• Round to (nearest) even (default)
• Normal rounding, almost: 2.5 ⇒ 2, 3.5 ⇒ 4
• Like you learned in grade school
• Insures fairness on calculation
• Half the time we round up, other half down

CS 61C L12 Pseudo (8) A Carle, Summer 2006 © UCB

Clarification - IEEE Four Rounding Modes

• Round towards + ∞
• ALWAYS round “up”: 2.1 ⇒ 3, -2.1 ⇒ -2

• Round towards - ∞
• ALWAYS round “down”: 1.9 ⇒ 1, -1.9 ⇒ -2

• Truncate
• Just drop the last bits (round towards 0)

• Round to (nearest) even (default)
• Normal rounding, almost: 2.5 ⇒ 2, 3.5 ⇒ 4
• Like you learned in grade school
• Insures fairness on calculation
• Half the time we round up, other half down

• This is just an example in base 10 to
show you the 4 modes.

• What really happens is…
1) in binary, not decimal!
2) at the lowest bit of the mantissa with the

guard bit(s) as our extra bit(s), and you need
to decide how these extra bit(s) affect the
result if the guard bits are “100…”

3) If so, you’re half-way between the
representable numbers.

E.g., 0.1010 is 5/8, halfway between our
representable 4/8 [1/2] and 6/8 [3/4]. Which
number do we round to? 4 modes!

CS 61C L12 Pseudo (9) A Carle, Summer 2006 © UCB

Integer Multiplication (1/3)

• Paper and pencil example (unsigned):
Multiplicand 1000 8
Multiplier x1001 9

1000
0000
0000

+1000
01001000

• m bits x n bits = m + n bit product

CS 61C L12 Pseudo (10) A Carle, Summer 2006 © UCB

Integer Multiplication (2/3)

• In MIPS, we multiply registers, so:
• 32-bit value x 32-bit value = 64-bit value

• Syntax of Multiplication (signed):
• mult register1, register2
• Multiplies 32-bit values in those registers &
puts 64-bit product in special result regs:

- puts product upper half in hi, lower half in lo
• hi and lo are 2 registers separate from the
32 general purpose registers

• Use mfhi register & mflo register to
move from hi, lo to another register

CS 61C L12 Pseudo (11) A Carle, Summer 2006 © UCB

Integer Multiplication (3/3)

• Example:
• in C: a = b * c;

• in MIPS:
- let b be $s2; let c be $s3; and let a be $s0

and $s1 (since it may be up to 64 bits)
mult $s2,$s3 # b*c
mfhi $s0 # upper half of

product into $s0
mflo $s1 # lower half of

product into $s1

• Note: Often, we only care about the
lower half of the product.

CS 61C L12 Pseudo (12) A Carle, Summer 2006 © UCB

Integer Division (1/2)

• Paper and pencil example (unsigned):
1001 Quotient

Divisor 1000|1001010 Dividend
-1000

10
101
1010
-1000

10 Remainder
(or Modulo result)

• Dividend = Quotient x Divisor + Remainder

CS 61C L12 Pseudo (13) A Carle, Summer 2006 © UCB

Integer Division (2/2)

• Syntax of Division (signed):
•div register1, register2
• Divides 32-bit register 1 by 32-bit register 2:
• puts remainder of division in hi, quotient in lo

• Implements C division (/) and modulo (%)
• Example in C: a = c / d;

b = c % d;

• in MIPS: a↔$s0;b↔$s1;c↔$s2;d↔$s3

div $s2,$s3 # lo=c/d, hi=c%d
mflo $s0 # get quotient
mfhi $s1 # get remainder

CS 61C L12 Pseudo (14) A Carle, Summer 2006 © UCB

Unsigned Instructions & Overflow

• MIPS also has versions of mult, div
for unsigned operands:

multu

divu
• Determines whether or not the product
and quotient are changed if the operands
are signed or unsigned.

• MIPS does not check overflow on ANY
signed/unsigned multiply, divide instr

• Up to the software to check hi

CS 61C L12 Pseudo (15) A Carle, Summer 2006 © UCB

FP Addition & Subtraction

• Much more difficult than with integers
(can’t just add significands)

• How do we do it?
• De-normalize to match larger exponent
• Add significands to get resulting one
• Normalize (& check for under/overflow)
• Round if needed (may need to renormalize)

• If signs ≠, do a subtract. (Subtract similar)
• If signs ≠ for add (or = for sub), what’s ans sign?

• Question: How do we integrate this into the
integer arithmetic unit? [Answer: We don’t!]

CS 61C L12 Pseudo (16) A Carle, Summer 2006 © UCB

MIPS Floating Point Architecture (1/4)
• Separate floating point instructions:

• Single Precision:
add.s, sub.s, mul.s, div.s

• Double Precision:
add.d, sub.d, mul.d, div.d

• These are far more complicated than
their integer counterparts

• Can take much longer to execute

CS 61C L12 Pseudo (17) A Carle, Summer 2006 © UCB

MIPS Floating Point Architecture (2/4)

• Problems:
• Inefficient to have different instructions
take vastly differing amounts of time.

• Generally, a particular piece of data will
not change FP ⇔ int within a program.

- Only 1 type of instruction will be used on it.
• Some programs do no FP calculations
• It takes lots of hardware relative to
integers to do FP fast

CS 61C L12 Pseudo (18) A Carle, Summer 2006 © UCB

MIPS Floating Point Architecture (3/4)

• 1990 Solution: Make a completely
separate chip that handles only FP.

• Coprocessor 1: FP chip
• contains 32 32-bit registers: $f0, $f1, …
• most of the registers specified in .s and
.d instruction refer to this set

• separate load and store: lwc1 and swc1
(“load word coprocessor 1”, “store …”)

• Double Precision: by convention,
even/odd pair contain one DP FP number:
$f0/$f1, $f2/$f3, … , $f30/$f31

- Even register is the name

CS 61C L12 Pseudo (19) A Carle, Summer 2006 © UCB

MIPS Floating Point Architecture (4/4)

• 1990 Computer actually contains
multiple separate chips:

• Processor: handles all the normal stuff
• Coprocessor 1: handles FP and only FP;
• more coprocessors?… Yes, later
• Today, FP coprocessor integrated with
CPU, or cheap chips may leave out FP HW

• Instructions to move data between main
processor and coprocessors:

•mfc0, mtc0, mfc1, mtc1, etc.

• Appendix pages A-70 to A-74 contain
many, many more FP operations.

CS 61C L12 Pseudo (20) A Carle, Summer 2006 © UCB

FP/Math Summary

• Reserve exponents, significands:
Exponent Significand Object
0 0 0
0 nonzero Denorm
1-254 anything +/- fl. pt. #
255 0 +/- ∞
255 nonzero NaN

• Integer mult, div uses hi, lo regs
•mfhi and mflo copies out.

• Four rounding modes (to even default)
• MIPS FL ops complicated, expensive

CS 61C L12 Pseudo (21) A Carle, Summer 2006 © UCB

Administrivia
• Midterm TOMORROW!!!11!one!

• 11:00 – 2:00
• 277 Cory
• You may bring with you:

- The green sheet from COD or a photocopy
thereof

- One 8 ½” x 11” note sheet with handwritten
notes on one side

- No books, calculators, other shenanigans
• Conflicts, DSP, other issues:

- let me know ASAP

• Project 1 is due Sunday night
CS 61C L12 Pseudo (22) A Carle, Summer 2006 © UCB

Review from before: lui
• So how does lui help us?

• Example:
addi $t0,$t0, 0xABABCDCD

becomes:
lui $at, 0xABAB
ori $at, $at, 0xCDCD
add $t0,$t0,$at

• Now each I-format instruction has only a 16-
bit immediate.

• Wouldn’t it be nice if the assembler
would this for us automatically?

- If number too big, then just automatically
replace addi with lui, ori, add

CS 61C L12 Pseudo (23) A Carle, Summer 2006 © UCB

True Assembly Language (1/3)

• Pseudoinstruction: A MIPS instruction
that doesn’t turn directly into a machine
language instruction, but into other MIPS
instructions

• What happens with pseudoinstructions?
• They’re broken up by the assembler into
several “real” MIPS instructions.

• But what is a “real” MIPS instruction?
Answer in a few slides

• First some examples

CS 61C L12 Pseudo (24) A Carle, Summer 2006 © UCB

Example Pseudoinstructions

• Register Move
move reg2,reg1
Expands to:
add reg2,$zero,reg1

• Load Immediate
li reg,value
If value fits in 16 bits:
addi reg,$zero,value
else:
lui reg,upper 16 bits of value
ori reg,$zero,lower 16 bits

CS 61C L12 Pseudo (25) A Carle, Summer 2006 © UCB

True Assembly Language (2/3)

• Problem:
• When breaking up a pseudoinstruction, the
assembler may need to use an extra reg.

• If it uses any regular register, it’ll overwrite
whatever the program has put into it.

• Solution:
• Reserve a register ($1, called $at for
“assembler temporary”) that assembler
will use to break up pseudo-instructions.

• Since the assembler may use this at any
time, it’s not safe to code with it.

CS 61C L12 Pseudo (26) A Carle, Summer 2006 © UCB

Example Pseudoinstructions

• Rotate Right Instruction
ror reg, value
Expands to:
srl $at, reg, value
sll reg, reg, 32-value
or reg, reg, $at

0

0

• “No OPeration” instruction
nop
Expands to instruction = 0ten,
sll $0, $0, 0

CS 61C L12 Pseudo (27) A Carle, Summer 2006 © UCB

Example Pseudoinstructions
• Wrong operation for operand

addu reg,reg,value # should be addiu

If value fits in 16 bits, addu is changed to:
addiu reg,reg,value
else:
lui $at,upper 16 bits of value
ori $at,$at,lower 16 bits
addu reg,reg,$at

• How do we avoid confusion about whether
we are talking about MIPS assembler with
or without pseudoinstructions?

CS 61C L12 Pseudo (28) A Carle, Summer 2006 © UCB

True Assembly Language (3/3)

• MAL (MIPS Assembly Language): the set
of instructions that a programmer may
use to code in MIPS; this includes
pseudoinstructions

• TAL (True Assembly Language): set of
instructions that can actually get
translated into a single machine
language instruction (32-bit binary string)

• A program must be converted from MAL
into TAL before translation into 1s & 0s.

CS 61C L12 Pseudo (29) A Carle, Summer 2006 © UCB

Questions on Pseudoinstructions

• Question:
• How does MIPS recognize pseudo-
instructions?

• Answer:
• It looks for officially defined pseudo-
instructions, such as ror and move

• It looks for special cases where the
operand is incorrect for the operation
and tries to handle it gracefully

CS 61C L12 Pseudo (30) A Carle, Summer 2006 © UCB

Rewrite TAL as MAL

• TAL:
or $v0,$0,$0

Loop: slt $t0,$0,$a1
beq $t0,$0,Exit
add $v0,$v0,$a0
addi $a1,$a1,-1
j Loop

Exit:

• This time convert to MAL
• It’s OK for this exercise to
make up MAL instructions

CS 61C L12 Pseudo (31) A Carle, Summer 2006 © UCB

Rewrite TAL as MAL (Answer)
• TAL: or $v0,$0,$0

Loop: slt $t0,$0,$a1
beq $t0,$0,Exit
add $v0,$v0,$a0
addi $a1,$a1,-1
j Loop

Exit:

• MAL:
li $v0,0

Loop: bge $zero,$a1,Exit
add $v0,$v0,$a0
sub $a1,$a1,1
j Loop

Exit:

CS 61C L12 Pseudo (32) A Carle, Summer 2006 © UCB

Peer Instruction

Which of the instructions below
are MAL and which are TAL?
A.addi $t0, $t1, 40000

B.beq $s0, 10, Exit

C.sub $t0, $t1, 1

CS 61C L12 Pseudo (33) A Carle, Summer 2006 © UCB

In conclusion

• Assembler expands real instruction set
(TAL) with pseudoinstructions (MAL)

• Only TAL can be converted to raw binary
• Assembler’s job to do conversion
• Assembler uses reserved register $at
• MAL makes it much easier to write MIPS

