
CS 61C L14 Combinational Logic (1) A Carle, Summer 2006 © UCB

inst.eecs.berkeley.edu/~cs61c/su06
CS61C : Machine Structures

Lecture #14: Combinational Logic,
Gates, and State

2006-07-20

Andy Carle
CS 61C L14 Combinational Logic (2) A Carle, Summer 2006 © UCB

61C

What are “Machine Structures”?

Coordination of many levels of abstraction

I/O systemProcessor

Compiler
Operating

System
(MacOS X)

Application (Netscape)

Digital Design
Circuit Design

Instruction Set
Architecture

Datapath & Control

transistors

MemoryHardware

Software Assembler

We’ll investigate lower abstraction layers!
(contract between HW & SW)

CS 61C L14 Combinational Logic (3) A Carle, Summer 2006 © UCB

Below the Program
• High-level language program (in C)

swap int v[], int k){
int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

}

• Assembly language program (for MIPS)
swap: sll $2, $5, 2

add $2, $4,$2
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)
jr $31

• Machine (object) code (for MIPS)
000000 00000 00101 0001000010000000
000000 00100 00010 0001000000100000 . . .

C compiler

assembler

?
CS 61C L14 Combinational Logic (4) A Carle, Summer 2006 © UCB

Physical Hardware - PowerPC 750

CS 61C L14 Combinational Logic (5) A Carle, Summer 2006 © UCB

Digital Design Basics (1/2)

• Next 2 weeks: we’ll study how a
modern processor is built starting with
basic logic elements as building
blocks.

• Why study logic design?
• Understand what processors can do fast
and what they can’t do fast (avoid slow
things if you want your code to run fast!)

• Background for more detailed hardware
courses (CS 150, CS 152)

CS 61C L14 Combinational Logic (6) A Carle, Summer 2006 © UCB

Digital Design Basics (2/2)

• ISA is very important abstraction layer
• Contract between HW and SW
• Can you peek across abstraction?
• Can you depend “across abstraction”?

• Voltages are analog, quantized to 0/1
• Circuit delays are fact of life
• Two types

• Stateless Combinational Logic (&,|,~)
• State circuits (e.g., registers)

CS 61C L14 Combinational Logic (7) A Carle, Summer 2006 © UCB

Outline

• Truth Tables
• Transistors
• Logic Gates
• Combinational Logic
• Boolean Algebra

CS 61C L14 Combinational Logic (8) A Carle, Summer 2006 © UCB

Truth Tables (1/6)

0

CS 61C L14 Combinational Logic (9) A Carle, Summer 2006 © UCB

TT (2/6) Ex #1: 1 iff one (not both) a,b=1

011
101
110
000
yba

CS 61C L14 Combinational Logic (10) A Carle, Summer 2006 © UCB

TT (3/6): Example #2: 2-bit adder

CS 61C L14 Combinational Logic (11) A Carle, Summer 2006 © UCB

TT (4/6): Ex #3: 32-bit unsigned adder

CS 61C L14 Combinational Logic (12) A Carle, Summer 2006 © UCB

TT (5/6): Conversion: 3-input majority

CS 61C L14 Combinational Logic (13) A Carle, Summer 2006 © UCB

TT (6/6): Conversion: 3-input majority

CS 61C L14 Combinational Logic (14) A Carle, Summer 2006 © UCB

Transistors (1/3)

CMOSFET Transistors:

* Physically exist!

* Voltages are quantized

* Only 2 Types:
- P-channel:

0 on gate -> pull up (1)
- N-channel:

1 on gate -> pull down (0)

* Undriven otherwise.

n:

p:

CS 61C L14 Combinational Logic (15) A Carle, Summer 2006 © UCB

Transistors (2/3)

CMOSFET Transistors:

* have delay and require power

* can be combined to perform
logical operations and maintain
state.

- logical operations will be
our starting point for digital
design

- state tomorrow

CS 61C L14 Combinational Logic (16) A Carle, Summer 2006 © UCB

Transistors (3/3): CMOS Nand

A B C
0 0 1
0 1 1
1 0 1
1 1 0

CS 61C L14 Combinational Logic (17) A Carle, Summer 2006 © UCB

Logic Gates (1/4)
• Transistors are too low level

• Good for measuring performance, power.
• Bad for logical design / analysis

• Gates are collections of transistors
wired in a certain way

• Can represent and reason about gates with
truth tables and Boolean algebra

• We will mainly review the concepts of truth
tables and Boolean algebra in this class. It
is assumed that you’ve seen these before.

• Section B.2 in the textbook has a review
CS 61C L14 Combinational Logic (18) A Carle, Summer 2006 © UCB

Logic Gates (2/4)

CS 61C L14 Combinational Logic (19) A Carle, Summer 2006 © UCB

Logic Gates (3/4)

AND Gate

CA
B

Symbol

A B C
0 0 0
0 1 0
1 0 0
1 1 1

Definition

AND
CS 61C L14 Combinational Logic (20) A Carle, Summer 2006 © UCB

Logic Gates (4/4)

CS 61C L14 Combinational Logic (21) A Carle, Summer 2006 © UCB

Boolean Algebra (1/7)

• George Boole, 19th Century
mathematician

• Developed a mathematical system
(algebra) involving logic, later known as
“Boolean Algebra”

• Primitive functions: AND, OR and NOT
• The power of BA is there’s a one-to-one
correspondence between circuits made
up of AND, OR and NOT gates and
equations in BA
+ means OR,• means AND, x means NOT

CS 61C L14 Combinational Logic (22) A Carle, Summer 2006 © UCB

BA (2/7): e.g., majority circuit

y = a • b + a • c + b • c
y = ab + ac + bc

CS 61C L14 Combinational Logic (23) A Carle, Summer 2006 © UCB

BA (3/7):Laws of Boolean Algebra

CS 61C L14 Combinational Logic (24) A Carle, Summer 2006 © UCB

BA (4/7): Circuit & Algebraic Simplification

CS 61C L14 Combinational Logic (25) A Carle, Summer 2006 © UCB

BA (5/7): Simplification Example

CS 61C L14 Combinational Logic (26) A Carle, Summer 2006 © UCB

BA (6/7): Canonical forms (1/2)

Sum-of-products
(ORs of ANDs)

CS 61C L14 Combinational Logic (27) A Carle, Summer 2006 © UCB

BA (7/7): Canonical forms (2/2)

CS 61C L14 Combinational Logic (28) A Carle, Summer 2006 © UCB

Combinational Logic

A combinational logic block is one in
which the output is a function only of
its current input.

• Combinational logic cannot have memory.

• Everything we’ve seen so far is CL

• CL will have delay (f(transistors))

CS 61C L14 Combinational Logic (29) A Carle, Summer 2006 © UCB

Peer Instruction

A. (a+b)• (a+b) = b
B. N-input gates can be thought of as

cascaded 2-input gates. I.e.,
(a ∆ bc ∆ d ∆ e) = a ∆ (bc ∆ (d ∆ e))
where ∆ is one of AND, OR, XOR,
NAND

C. You can use NOR(s) with clever
wiring to simulate AND, OR, &
NOT

CS 61C L14 Combinational Logic (30) A Carle, Summer 2006 © UCB

Administrivia

• HW 4 due Friday
• Project 2 due Friday the 28th

• If you want to get a little bit ahead (in a
moderately fun sort of way), start
playing with Logisim:

• http://ozark.hendrix.edu/~burch/logisim/

CS 61C L14 Combinational Logic (31) A Carle, Summer 2006 © UCB

Signals and Waveforms

• Outputs of CL change over time
• With what? Change in inputs

• Can graph changes with waveforms …

CS 61C L14 Combinational Logic (32) A Carle, Summer 2006 © UCB

Signals and Waveforms: Adders

CS 61C L14 Combinational Logic (33) A Carle, Summer 2006 © UCB

Signals and Waveforms: Grouping

CS 61C L14 Combinational Logic (34) A Carle, Summer 2006 © UCB

Signals and Waveforms: Circuit Delay

CS 61C L14 Combinational Logic (35) A Carle, Summer 2006 © UCB

State

• With CL, output is always a function of
CURRENT input

• With some (variable) propagation delay

• Clearly, we need a way to introduce
state into computation

CS 61C L14 Combinational Logic (36) A Carle, Summer 2006 © UCB

Accumulator Example

Want: S=0; for i from 0 to n-1
S = S + Xi

CS 61C L14 Combinational Logic (37) A Carle, Summer 2006 © UCB

First try…Does this work?

Nope!
Reason #1… What is there to control the
next iteration of the ‘for’ loop?
Reason #2… How do we say: ‘S=0’?

Need a way to store partial sums! …

Feedback!

CS 61C L14 Combinational Logic (38) A Carle, Summer 2006 © UCB

Circuits with STATE (e.g., register)

Need a Logic Block that will:
1. store output (partial sum) for a while,
2. until we tell it to update with a new value.

CS 61C L14 Combinational Logic (39) A Carle, Summer 2006 © UCB

Register Details…What’s in it anyway?

• n instances of a “Flip-Flop”, called that
because the output flips and flops betw. 0,1

• D is “data”
• Q is “output”
• Also called “d-q Flip-Flop”,“d-type Flip-Flop”

CS 61C L14 Combinational Logic (40) A Carle, Summer 2006 © UCB

What’s the timing of a Flip-flop? (1/2)

• Edge-triggered D-type flip-flop
• This one is “positive edge-triggered”

• “On the rising edge of the clock, the input d
is sampled and transferred to the output. At
all other times, the input d is ignored.”

CS 61C L14 Combinational Logic (41) A Carle, Summer 2006 © UCB

What’s the timing of a Flip-flop? (2/2)

• Edge-triggered D-type flip-flop
• This one is “positive edge-triggered”

• “On the rising edge of the clock, the input d
is sampled and transferred to the output. At
all other times, the input d is ignored.”

CS 61C L14 Combinational Logic (42) A Carle, Summer 2006 © UCB

Bus a bunch of D FFs together …

• Register of size N:
• n instances of D Flip-Flop

CS 61C L14 Combinational Logic (43) A Carle, Summer 2006 © UCB

Second try…How about this?

Rough
timing…

Yep!

CS 61C L14 Combinational Logic (44) A Carle, Summer 2006 © UCB

Accumulator Revisited (proper timing 1/2)

CS 61C L14 Combinational Logic (45) A Carle, Summer 2006 © UCB

Accumulator Revisited (proper timing 2/2)

CS 61C L14 Combinational Logic (46) A Carle, Summer 2006 © UCB

Pipelining to improve performance (1/2)

Timing…

CS 61C L14 Combinational Logic (47) A Carle, Summer 2006 © UCB

Pipelining to improve performance (2/2)

Timing…

CS 61C L14 Combinational Logic (48) A Carle, Summer 2006 © UCB

Peer Instruction 2

• Simplify the following Boolean algebra
equation:

• Q = !(A*B) + !(!A * C)
• Use algebra, individual steps, etc.

• Don’t just look at it and figure it out, or I’ll
have to start using harder examples. ☺

CS 61C L14 Combinational Logic (49) A Carle, Summer 2006 © UCB

“And In conclusion…”

• Use this table and techniques we
learned to transform from 1 to another

