inst._eecs.berkeley.edu/~cs61c/su06

CS61C : Machine Structures

Lecture #14: Combinational Logic,
Gates, and State

2006-07-20

Andy Carle

Below the Program
» High-level language program (in C)

swap int v[], int k){
int temp; C compiler
temp = v[k]; @

Vv[K] = v[k+1];
v[k+1] = temp;

}
» Assembly language program (for MIPS)
swap: sl $2, $5, 2
Iw $16, 4($2)
sw $16, 0($2) "
sw $15, 4($2)
jr $31
»Machine (object) code (for MIPS)
000000 00000 00101 0001000010000000 2

add $2, $4,%$2
@)OOOOO 00100 00010 0001000000100000 . . .

Iw $15, 0($2)
cseiciis Logic)

A Carle, Summer 2006 9 ucs]

Digital Design Basics (1/2)

*Next 2 weeks: we’ll study how a
modern processor is built starting with
basic logic elements as building
blocks.

*Why study logic design?

« Understand what processors can do fast
and what they can’t do fast (avoid slow
things if you want your code to run fast!)

* Background for more detailed hardware
courses (CS 150, CS 152)

What are “Machine Structures”?

Application (Netscape)

Operating
lm C.System . [T

61C

|

:

Digital Design

Circuit Design
[transistors |

Coordination of many levels of abstraction
We’ll investigate lower abstraction I)ayers!

IQ (contract between HW & SW

jonal Logic (2) Acarle,

Physical Hardware - PowerPC 750

R TTTTTT) A b B B

i Instruction|Cache

U PR L. 11151 PP PSPYPTSPTSPTYPSTIPININITLL 1L L4 LILTRV: RO

@ CS 61C L14 Combinational Logic (4)

A Carle, Summer 2006

ucs|

Digital Design Basics (2/2)

*ISA is very important abstraction layer
» Contract between HW and SW
«Can you peek across abstraction?
«Can you depend “across abstraction”?

«Voltages are analog, quantized to 0/1
« Circuit delays are fact of life

*Two types
« Stateless Combinational Logic (&,],~)
« State circuits (e.g., registers)

Outline

*Truth Tables

* Transistors

*Logic Gates

* Combinational Logic
*Boolean Algebra

TT (2/6) Ex #1: 1 iff one (not both) a,b=1

A 2o ol
_ao o
o-\—\o‘~<

@ cseicita Logic(9)

A Carle, Summer 2006 9 ucs]

TT (4/6): Ex #3: 32-bit unsigned adder
A B |C

Truth Tables (1/6)

e
o
o

(=%

—_—— D =D O —-0 D= —=0ce

y

-0 OO0 O

F(0,0,0,0)
F(0.00,1)
F(0.0,1.0)
F(0,0,1,1)
F(0,1,00)
F(0,1,0,1)
F(0,1,1,0)
F(0,1,1,1)
F(1,0,0,0)
F(1,0.0,1)
F(1,0,1,0)
F(10,1,1)
F(1,1,0,0)
F(1,1,0,1)
F(1,1,1,0)
F(1,1,1.1)

[=]

a
[

C — F
. —

—

- - N - W - ey _ Yy
e D O e D e D e O O e

>
o

TT (3/6): Example #2: 2-bit adder

A B |C

A 6 ajag by | caepeg
00 00 | 000
00 01 | 001
(U1} 10 | 010
00 11 |.e11
o1 00 | 001
01 01 | 010
01 10 | 011
01 11 | 100
10 00 | 010
10 01 | 011

10 10 | 100
10 11 101

11 00 | 011
11 01 | 100
1 10 | 101

1 11 | 110

A Carle, Summer 2006 0 ucs]

000 ...0 000 ...0
000 ...0 000 ... 1

1.1 111..1

000 ... 00
000 ... 01

111 ... 10

TT (5/6): Conversion: 3-input majority
a b cly
0 0 010
0 0 110
0O 1 0/0
0 1 1|1
1 0 0]0
1 0 1]1
1 1 01
@ 1 1 1]1

TT (6/6): Conversion: 3-input majority

a b cly

0 0 00

0O 0 110

0O 1 0|0 *

0 1 1|1 b

1 0 0]0 Y4
1 0 1]1 C

1 1 0]1

I 1T 1]1

Transistors (2/3)

CMOSFET Transistors:

* have delay and require power

* can be combined to perform
& "‘ logical operations and maintain
state.
b _H - logical operations will be
1, our starting point for digital
design

- state tomorrow

@ cseicita Logic (15)

A Carle, Summer 2006 9 ucs]

Logic Gates (1/4)

* Transistors are too low level
* Good for measuring performance, power.
* Bad for logical design / analysis

* Gates are collections of transistors
wired in a certain way

«Can represent and reason about gates with
truth tables and Boolean algebra

*We will mainly review the concepts of truth
tables and Boolean algebra in this class. It
is assumed that you’ve seen these before.

«» Section B.2 in the textbook has a review

Cs61CL1a Logic(I7) AcCarl

Transistors (1/3)

CMOSFET Transistors:
* Physically exist!
* Voltages are quantized
a ’_‘ *Only 2 Types:
- P-channel:
0 on gate -> pull up (1)
- N-channel:

1' 1 on gate -> pull down (0)

* Undriven otherwise.

Transistors (3/3): CMOS > Nand

10

a. ab
i — C 00
OR 5 01

NOT

e [« 8
= NAND c
a ..‘ = L
L _Hl,
@c sicL14 inational Logic (16) A Carle, Summer 2006 © uca|
Logic Gates (2/4)
S 00
AND 5 01

Logic Gates (3/4)

AND Gate
Symbol Definition

-))° AB

- -0 O
_ =0

Boolean Algebra (1/7)

*George Boole, 19t Century
mathematician

*Developed a mathematical system
galgebra) |nvoIV|ng, logic, later known as
‘Boolean Algebra

* Primitive functions: AND, OR and NOT

*The power of BA is there’s a one-to-one
correspondence between circuits made
up of AND, OR and NOT gates and
equations in BA

@+ means OR,* means AND, x means NOT

cseiciid Logic 21) A Carle, Summer 2006 © ucs)

BA (3/7):Laws of Boolean Algebra

r-z—0 r+T—1 complementarity
z-0—0 z+1—1 laws of O's and 1’s
r-l—=x z+0—=2 identities
r-r=xzx r+r==x idempotent law
T-y=y-xT z+y=y+z commutativity

(zy)z =z(yz) (z+y)+z=x+(y+z) associativity
z(y+z)=zy+zz z+yz=(zx+y)(zr+z) distribution
uniting theorem
DeMorgan’s Law

Iy +r=:IT

T y=

(x+yle==x
(z+y)=z-7

2]
+
2

Logic Gates (4/4)

a. —\ e

b jD—C 00| 0

XOR o1 |1
10 |1

110
o — Jahy| o

b ‘_D—‘ < 00 |1

NAND o1 |1
10 |1

1o

/ ab | ¢

”g :Dw ' 00| 1

NOR o1 |o
100

0

11
CS 61C 114 Conpinational Logic 20) Acarie

BA (2/7): e.g., majority circuit

ac

)

y=aeb+acc+t+b-c

y=ab +ac+bc

@ CS 61C L14 Combinational Logic (22) A Carle, Summer 2006 0 ucs]

BA (4/7): Circuit & Algebraic Simplification
b —\
= original circuit
1
y=((ab) +a) +¢ equation derived from original circuit
1
=abta+c algebraic simplification
=alb+1)+¢
=afl)+e
=a+c
!
c—D—y
simplified circuit

e
cseicLi Logic 24) Acarle,

BA (5/7): Simplification Example

y =ab+a+c
= a(b+ 1) + ¢ distribution, identity
=a(l)+c law of I's
=a+c identity

BA (7/7): Canonical forms (2/2)

abe + abc + abe + abe

= ab(¢+c) +ac(b+b) distribution
ab(1) + ag(1) complementarity
ab + ac identity

o
cseicita Logic 7).

A Carle, Summer 2006 9 ucs]

Peer Instruction

A. (atb)* (atb)=b

B. N-input gates can be thought of as
cascaded 2-input gates. l.e.,
(aAbcAdAe)=aA(bcA(dAe))
where A is one of AND, OR, XOR,
NAND

C. You can use NOR(s) with clever
wiring to simulate AND, OR, &
NOT

BA (6/7): Canonical forms (1/2)
abe | y Sum-of-products
a-b-e 0001 (ORs of ANDs)
@-b-c 0011
010 | 0 y = abc + abc + abc + abe
011 | 0
a-b-z 100 |1
101 | 0
a-b-c¢ 110 |1
111 | 0

Combinational Logic

A combinational logic block is one in
which the output is a function only of
its current input.

* Combinational logic cannot have memory.
« Everything we’ve seen so far is CL

«CL will have delay (f(transistors))

@c §1C L14 Combinational Logic (28)

A Carle, Summer 2006 0 ucs]

Administrivia

*HW 4 due Friday
*Project 2 due Friday the 28t

«If you want to get a little bit ahead (in a
moderatel¥ fun sort of way), start
playing with Logisim:

« http://ozark.hendrix.edu/~burch/logisim/

Signals and Waveforms

*Outputs of CL change over time
*With what? - Change in inputs

« Can graph changes with waveforms ...

Signals and Waveforms: Grouping

. e JTlelef T
l A ‘ O | .
|

7, | | o] ol
n;ofom o0
x e e)]

A Carle, Summer 2006

olo}(:—fl

ucs|

Signals and Waveforms: Adders

State

*With CL, output is always a function of
CURRENT input

« With some (variable) propagation delay

+Clearly, we need a way to introduce
state into computation

Signals and Waveforms: Circuit Delay

A= las a,,a.,a.]
B= E.lDJ ' 'DA\ b, ,b.-.]

4 = fo—s

A —— = 4 -
Gy —

ﬂ';—4

— |-.-— odder P.--J;.c%ml‘m ’u'lmﬂ
@ o8 616 118 compinatnal Logie o

A Carle, Summer 2006 0 ucs]

Accumulator Example

A~ Som —+—*' S

for 1 from O to n-1
S + X

Want: S=0;
S =

First try...Does this work?

[= S
Nope!

Reason #1... What is there to control the

next iteration of the ‘For’ loop?

Reason #2... How do we say: ‘S=0"?
Need a way to store partial sums! ...

SS6ICL1a Logic GT) Acarl

Register Details...What’s in it anyway?

pre I .
53 S

" 4 qrr

*n instances of a “F|IP -Flop”, called that
because the output flips and flops betw. 0,1

*Dis “data”
*Qis “output”
« Also called “d-q Flip-Flop”,“d-type Flip-Flop”

cseiciid Logic (39) A Carle, Summer 2006 © ucs)

Circuits with STATE (e.g., register)

n Ih? u“

LK REGISTER

" o\fr?o‘\'

Need a Logic Block that will:
1. store output (partial sum) for a while,
2. until we tell it to update with a new value.

What’s the timing of a Flip-flop? (2/2)

c - : Tnput ia‘l wzt be shble
S B piastivite ax
o e Msekup™ Hime
I [A
A — — N lpadmegt
” N —— clk-to-4, "{dmj

» Edge-triggered D-type flip-flop -

* This one is “positive edge-triggered” __*

* “On the rising edge of the clock, the input d
is sampled and transferred to the output. At

I@all other times, the input d is ignored.”

Cs61CL1a Logic (41) AcCarl

What’s the timing of a Flip-flop? (1/2)

o 770 I N\

» Edge-triggered D-type flip-flop -

« This one is “positive edge-triggered” __ 1

* “On the rising edge of the clock, the input d
is sampled and transferred to the output. At
I@all other times, the input d is ignored.

cseicl inational Logic (40)

A Carle, Summer 2006

ucs|

Bus a bunch of D FFs together ...

dny As
[_,,77_7
‘ ge/old'u‘ * .' '. - ,jr_
an 1 q-. -1 Fo

* Register of size N:
« n instances of D Flip-Flop

Second try...How about this? Yep!

S

LOAD/ cLK.

ol o regtr

Rough IW,’(UC _J' LJ_[[_L J_L—rL
timing... s :I—_DZ:IEW v

X = 79 N e

Accumulator Revisited (proper timing 2/2)

L e
S TZA_# [T T L ey

T @ %o % Xe | %3 Xy

5 R Kty [et]
Cs6icLid Logic (45)

A Carle, Summer 2006 © uca|

Pipelining to improve performance (2/2)

T T Timing...

IgipipEpugl
I I S K53 (0 () z2f
& R I (50 DY) K0

Accumulator Revisited (proper timing 1/2)

ax L LU
St Do TR IERT 1
* 2 R RN RGN TR | f Cacnrg
S :

~ =T

Pipelining to improve performance (1/2)

Timing...
0 U O O
R

Ki
i) [6))

e add/ehidt prop, Mmj

Ri-t l (LY [(FIR
I@ CS 61 L14 Combinational Logic (46) ACarle, Summer 2006 0 uca|

—

Peer Instruction 2

+ Simplify the following Boolean algebra
equation:

-Q=(A*B) + |(!A*C)

*Use algebra, individual steps, etc.

*Don’t just look at it and figure it out, or I'll
have to start using harder examples. ©

“And In conclusion...”

«Use this table and techniques we
learned to transform from 1 to another

