## inst.eecs.berkeley.edu/~cs61c/su06 CS61C : Machine Structures

## Lecture \#15: State 2 and Blocks



2006-07-24
Andy Carle

## Outline

- Review
- Clocks
-FSMs
- Combinational Logic Blocks


## Review (1/3)

- Use this table and techniques we learned to transform from 1 to another



## (2/3): Circuit \& Algebraic Simplification


original circuit
equation derived from original circuit
algebraic simplification
simplified circuit

Review (3/3)


## Clocks

- Need a regular oscillator:

- Wire up three inverters in feedback?...
- Not stable enough
-1->0 and 0->1 transitions not symmetric.
- Solution: Base oscillation on a natural resonance. But of what?


## Clocks



- Controller puts AC across crystal:
- At anything but resonant freqs $\rightarrow$ destructive interference
- Resonant freq $\rightarrow$ CONSTRUCTIVE!

Signals and Waveforms: Clocks


## FSMs

- With state elements, we can build circuits whose output is a function of inputs and current state.

- State transitions will occur on clock edges.

Finite State Machines Introduction


Cal

## Finite State Machine Example: 3 ones...

INPUT $\phi \sqrt{1} \otimes \sqrt{11} \phi \sqrt{1} 111 \phi \sqrt{1} 111 \quad \phi \sqrt{1} 111111 \phi$


## Draw the FSM...



| PS | Input | NS | Output |
| :---: | :---: | :---: | :---: |
| 00 | 0 | 00 | 0 |
| 00 | 1 | 01 | 0 |
| 01 | 0 | 00 | 0 |
| 01 | 1 | 10 | 0 |
| 10 | 0 | 00 | 0 |
| 10 | 1 | 00 | 1 |

Hardware Implementation of FSM


## General Model for Synchronous Systems



## Peer Instruction 1

-Two bit counter:

- 4 States: 0, 1, 2, 3
- When input c is high, go to next state
- (3->0)
- When input is low, don't change state
- On the transition from state 3 to state 0 , output a 1. At all other times, output 0.


## CL Blocks

## - Let's use our skills to build some CL blocks:

- Multiplexer (mux)
- Adder
- ALU

Data Multiplexor (here 2-to-1, n-bit-wide)


Cal $\qquad$
$\qquad$

## N instances of 1-bit-wide mux



How do we build a 1-bit-wide mux?

$$
\bar{s} a+s b
$$



Cal $\qquad$
$\qquad$

4-to-1 Multiplexor?
$a b c d$


Cal

$$
e=\widehat{s_{1} s_{0}} a+\overline{s_{1}} s_{0} b+s_{1} \overline{s_{0} c} c+s_{1} s_{0} d
$$

An Alternative Approach


Hierarchically!

## Arithmetic and Logic Unit

- Most processors contain a logic block called "Arithmetic/Logic Unit" (ALU)
- We'll show you an easy one that does ADD, SUB, bitwise AND, bitwise OR

when $S=00, R=A+B$
when $S=01, R=A-B$
when $S=10, R=A$ and $B$
when $S=11, R=A$ or $B$

Our simple ALU


## Adder/Subtracter Design -- how?

- Truth-table, then determine canonical form, then minimize and implement as we've seen before
- Look at breaking the problem down into smaller pieces that we can cascade or hierarchically layer

N 1-bit adders $\Rightarrow 1 \mathrm{~N}$-bit adder


## Adder/Subtracter - One-bit adder LSB...

$$
\begin{aligned}
& \begin{array}{c}
\mathrm{a}_{0} \\
\mathrm{~b}_{0} \\
\mathrm{~s}_{0}
\end{array} \quad \begin{array}{cc|cc}
\mathrm{a}_{0} & \mathrm{~b}_{0} & \mathrm{~s}_{0} & \mathrm{c}_{1} \\
\hline \hline 0 & 0 & 0 & 0 \\
& 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
& 1 & 1 & 0 \\
1 \\
s_{0}= \\
c_{1}=
\end{array} \\
&
\end{aligned}
$$

## Adder/Subtracter - One-bit adder (1/2)...

$$
\begin{aligned}
& +\begin{array}{cc|c|c}
\mathrm{a}_{3} & \mathrm{a}_{2} & \mathrm{a}_{1} & \mathrm{a}_{0} \\
\mathrm{~b}_{3} & \mathrm{~b}_{2} & \mathrm{~b}_{1} & \mathrm{~b}_{0} \\
\hline \mathrm{~s}_{3} & \mathrm{~s}_{2} & \mathrm{~s}_{1} & \mathrm{~s}_{0}
\end{array} \\
& \begin{array}{r}
s_{i}= \\
c_{i+1}=
\end{array}
\end{aligned}
$$

## Adder/Subtracter - One-bit adder (2/2)...



$$
\begin{aligned}
s_{i} & =\operatorname{XOR}\left(a_{i}, b_{i}, c_{i}\right) \\
c_{i+1} & =\operatorname{MAJ}\left(a_{i}, b_{i}, c_{i}\right)=a_{i} b_{i}+a_{i} c_{i}+b_{i} c_{i}
\end{aligned}
$$

## What about overflow?

- Consider a 2-bit signed \# \& overflow:
$\cdot 10=-2+-2$ or -1
$\cdot 11=-1+-2$ only
$\cdot 00=0$ NOTHING!
$\cdot 01=1+1$ only
- Highest adder

- $\mathrm{C}_{1}=$ Carry-in $=\mathrm{C}_{\text {in }}, \mathrm{C}_{2}=$ Carry-out $=\mathrm{C}_{\text {out }}$
- No $\mathrm{C}_{\text {out }}$ or $\mathrm{C}_{\text {in }} \Rightarrow$ NO overflow!

What $\cdot C_{\text {in }}$, and $C_{\text {out }} \Rightarrow$ NO overflow! op?

- $C_{\text {in }}$, but no $C_{\text {out }} \Rightarrow A, B$ both $>0$, overflow!
- $C_{\text {out }}$, but no $C_{i n} \Rightarrow A, B$ both $<0$, overflow!


## What about overflow?

- Consider a 2-bit signed \# \& overflow:

$$
\begin{aligned}
& 10=-2 \\
& 11=-1 \\
& 00=0 \\
& 01=1
\end{aligned}
$$

- Overflows when...

$-C_{\text {in }}$, but no $C_{\text {out }} \Rightarrow A, B$ both $>0$, overflow!
- $C_{\text {out }}$, but no $C_{\text {in }} \Rightarrow A, B$ both $<0$, overflow!


## overflow $=c_{n}$ XOR $c_{n-1}$

Extremely Clever Subtractor


## Peer Instruction

A. Truth table for mux with 4 control signals has $2^{4}$ rows
B. We could cascade N 1-bit shifters to make 1 N -bit shifter for sll, srl
C. If 1-bit adder delay is T , the N -bit adder delay would also be $T$

## "And In conclusion..."

- Use muxes to select among input
- S input bits selects 2 S inputs
- Each input can be $n$-bits wide, indep of $S$
- Implement muxes hierarchically
- ALU can be implemented using a mux
- Coupled with basic block elements
- N-bit adder-subtractor done using N 1bit adders with XOR gates on input
- XOR serves as conditional inverter


## State Circuits Overview (Extra Slides)

- State circuits have feedback, e.g.

- Output is function of inputs + fed-back signals.
- Feedback signals are the circuit's state.
- What aspects of this circuit might cause complications?


## A simpler state circuit: two inverters


-When started up, it's internally stable.

- Provide an or gate for coordination:


A Cs 61c L15 State \& Blocks (34)

## An R-S latch (cross-coupled NOR gates)

-S means "set" (to 1),
A B NOR
001
010


- Adding Q' gives standard RS-latch:


Truth table
S R Q
00 hold (keep value)
010
101
11 unstable

## An R-S latch (in detail)

## Truth table


$S R^{-} Q Q(t+\Delta t)$
00010 hold
00101 hold
01010 reset
01100 reset
10011 set
10101 set
$110 \times x$ unstable
$111 \times x$ unstable

## Controlling R-S latch with a clock

- Can't change $R$ and $S$ while clock is active.

A B NOR
001
010
100
110


- Clocked latches are called flip-flops.


## D flip-flop are what we really use

- Inputs C (clock) and D.
- When C is 1 , latch open, output = D (even if it changes, "transparent latch")
- When C is 0 , latch closed, output $=$ stored value.

C DAND
000
010
100
111


## D flip-flop details

- We don't like transparent latches
- We can build them so that the latch is only open for an instant, on the rising edge of a clock (as it goes from $0 \Rightarrow 1$ )


Timing Diagram

## Edge Detection



- This is a "rising-edge D Flip-Flop"
- When the CLK transitions from 0 to 1 (rising edge) ...
- $\mathbf{Q} \leftarrow \mathrm{D}$; $\quad$ Qbar $\leftarrow$ not $D$
- All other times: $Q \leftarrow Q ;$ Qbar $\leftarrow$ Qbar

