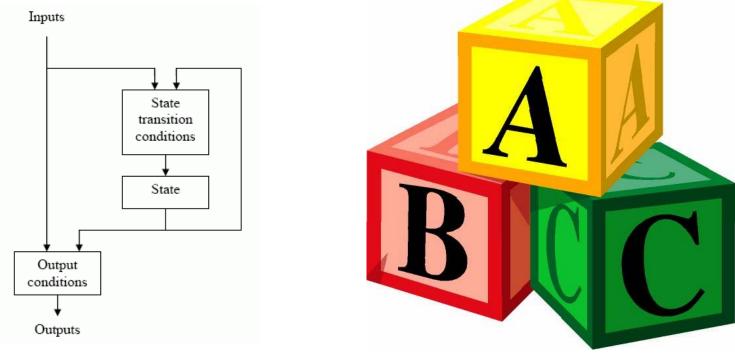
#### 

#### Lecture #15: State 2 and Blocks



2006-07-24



**Andy Carle** 

# Outline

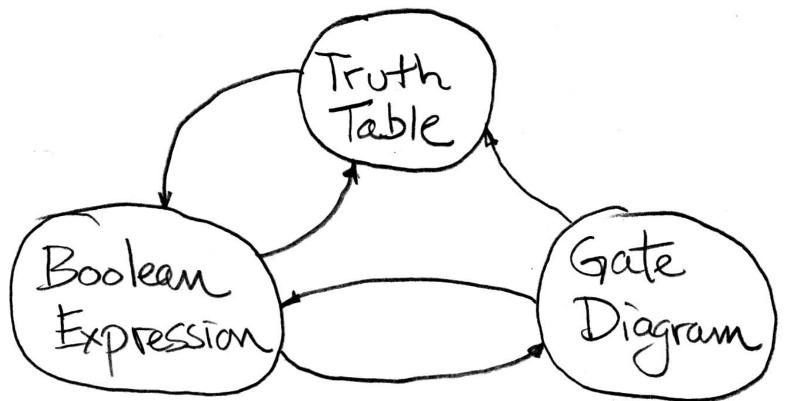
- Review
- Clocks
- •FSMs

# Combinational Logic Blocks



# **Review (1/3)**

• Use this table and techniques we learned to transform from 1 to another

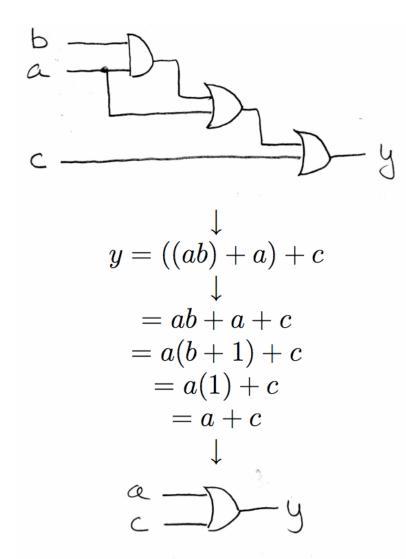




A Carle, Summer 2006 © UCB

CS 61C L15 State & Blocks (3)

# (2/3): Circuit & Algebraic Simplification



original circuit

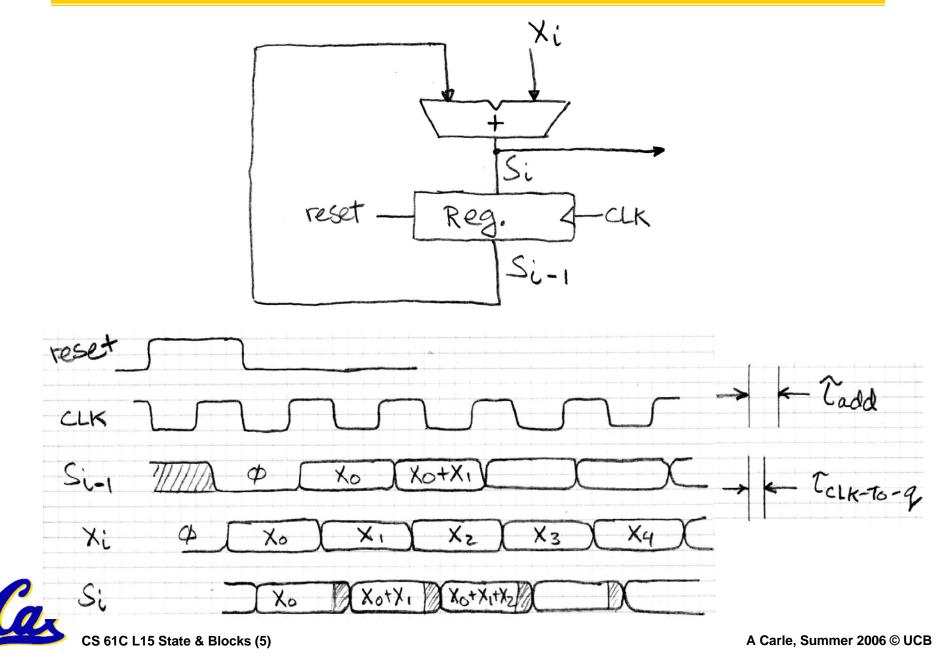
equation derived from original circuit

algebraic simplification

simplified circuit









#### • Need a regular oscillator:



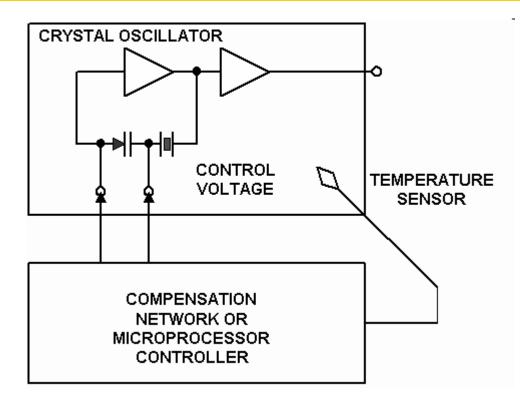
### • Wire up three inverters in feedback?...

- Not stable enough
- •1->0 and 0->1 transitions not symmetric.

# Solution: Base oscillation on a natural resonance. But of what?



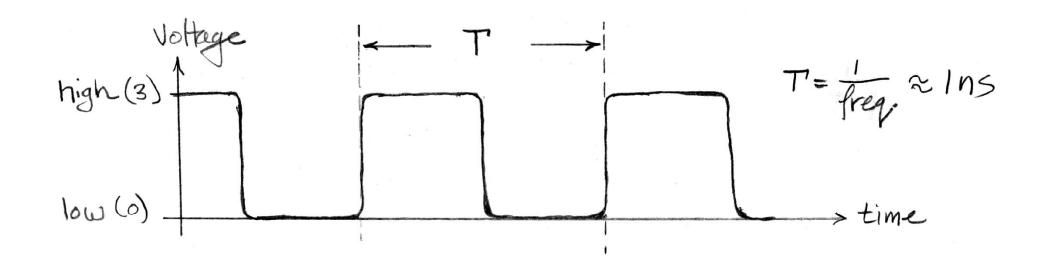




### Controller puts AC across crystal:

- At anything but resonant freqs → destructive interference
- Cal
- Resonant freq → CONSTRUCTIVE!

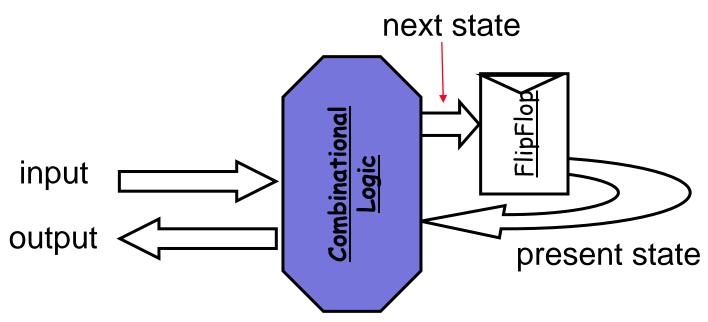
#### **Signals and Waveforms: Clocks**







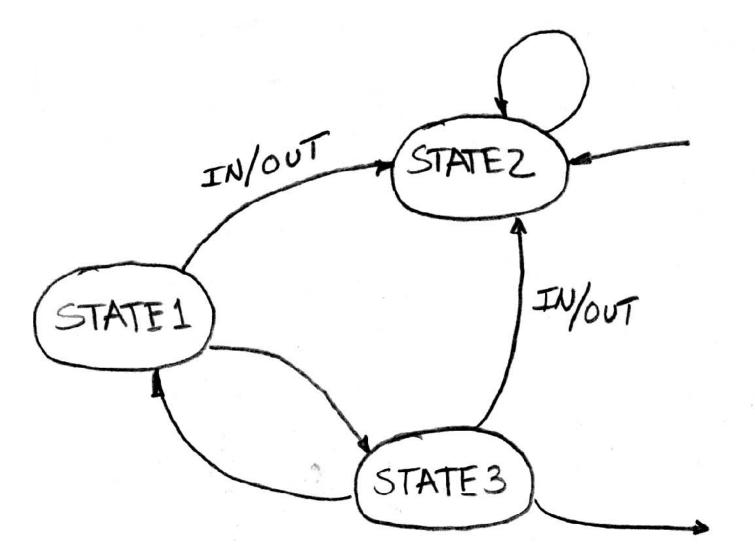
#### With state elements, we can build circuits whose output is a function of inputs and current state.



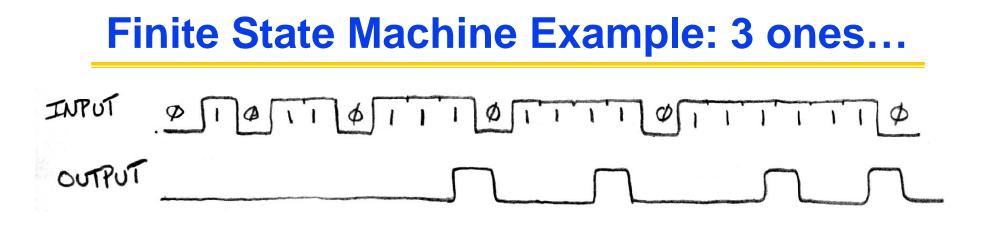
State transitions will occur on clock edges.



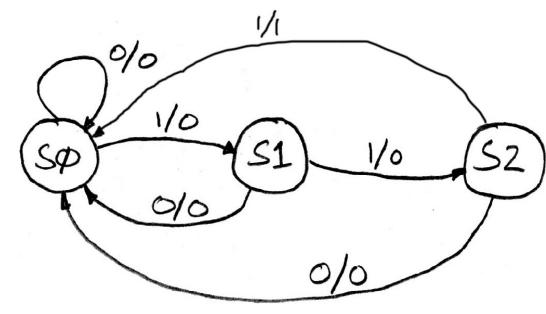
#### **Finite State Machines Introduction**







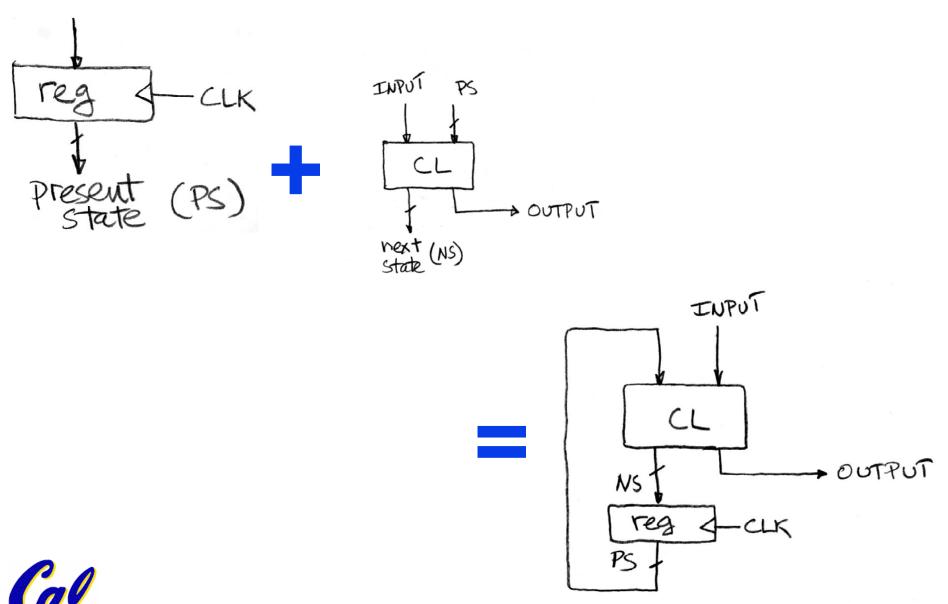
Draw the FSM...



| PS | Input | NS | Output |
|----|-------|----|--------|
| 00 | 0     | 00 | 0      |
| 00 | 1     | 01 | 0      |
| 01 | 0     | 00 | 0      |
| 01 | 1     | 10 | 0      |
| 10 | 0     | 00 | 0      |
| 10 | 1     | 00 | 1      |

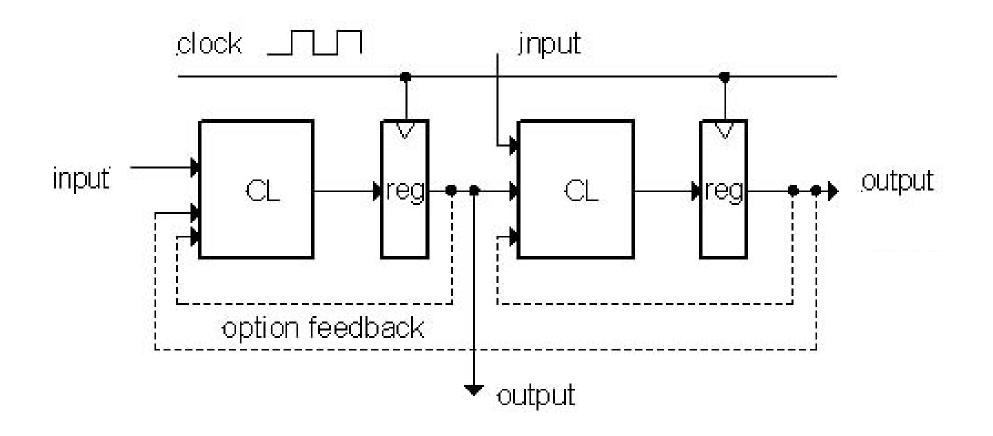


#### Hardware Implementation of FSM





### **General Model for Synchronous Systems**





- Two bit counter:
  - •4 States: 0, 1, 2, 3
  - When input c is high, go to next state
    - (3->0)
  - When input is low, don't change state
  - On the transition from state 3 to state 0, output a 1. At all other times, output 0.

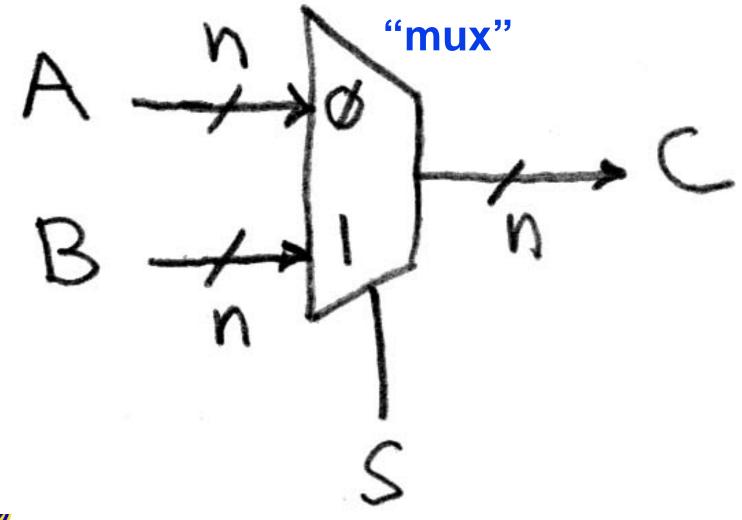


# **CL Blocks**

- Let's use our skills to build some CL blocks:
  - Multiplexer (mux)
  - Adder
  - ALU

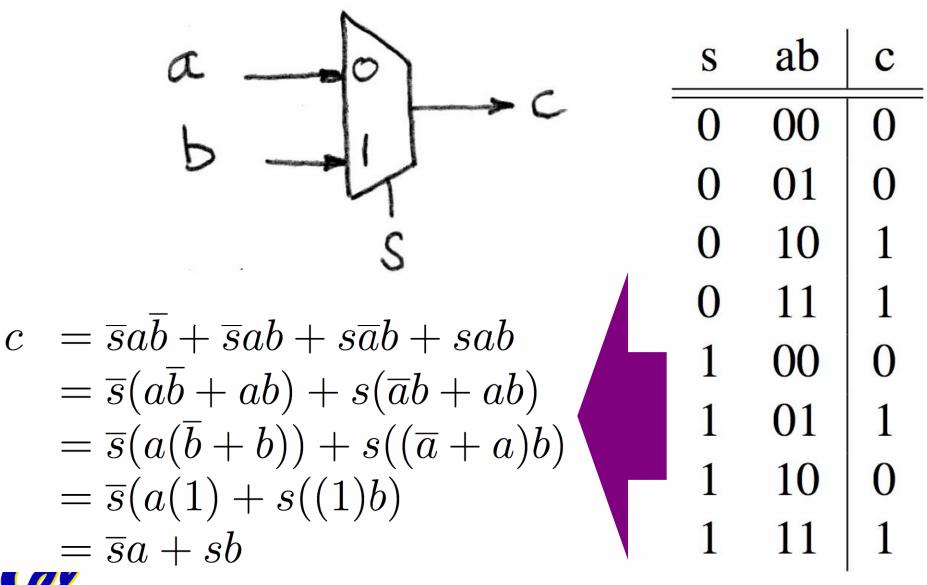


#### Data Multiplexor (here 2-to-1, n-bit-wide)



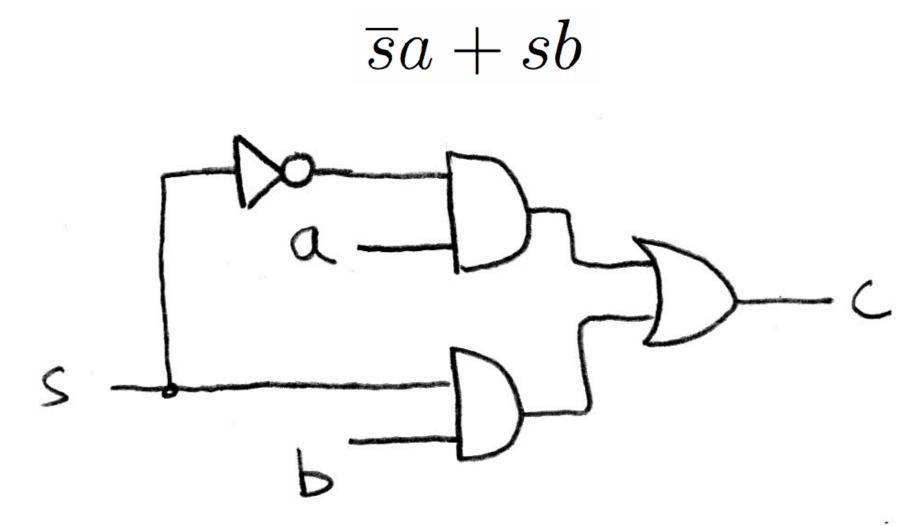


#### N instances of 1-bit-wide mux



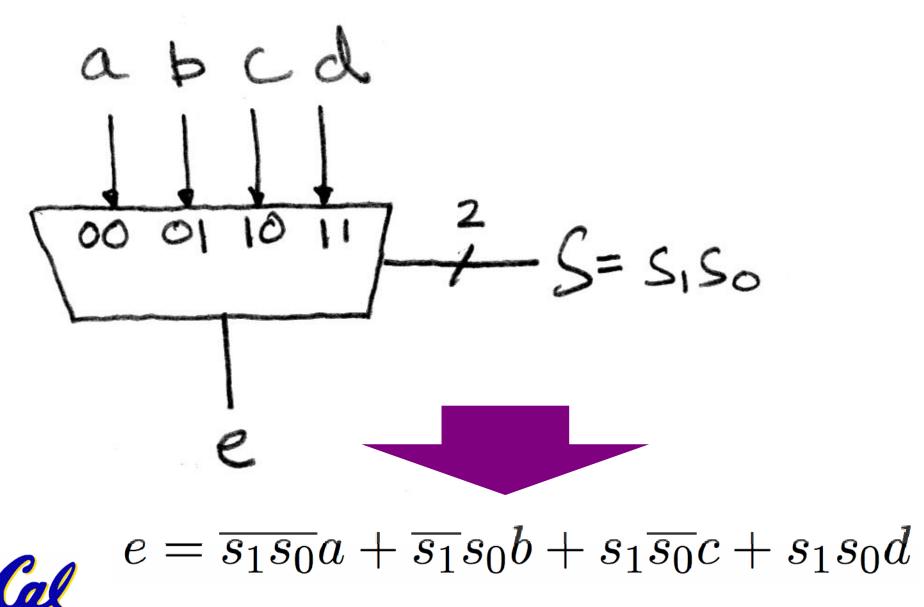


#### How do we build a 1-bit-wide mux?



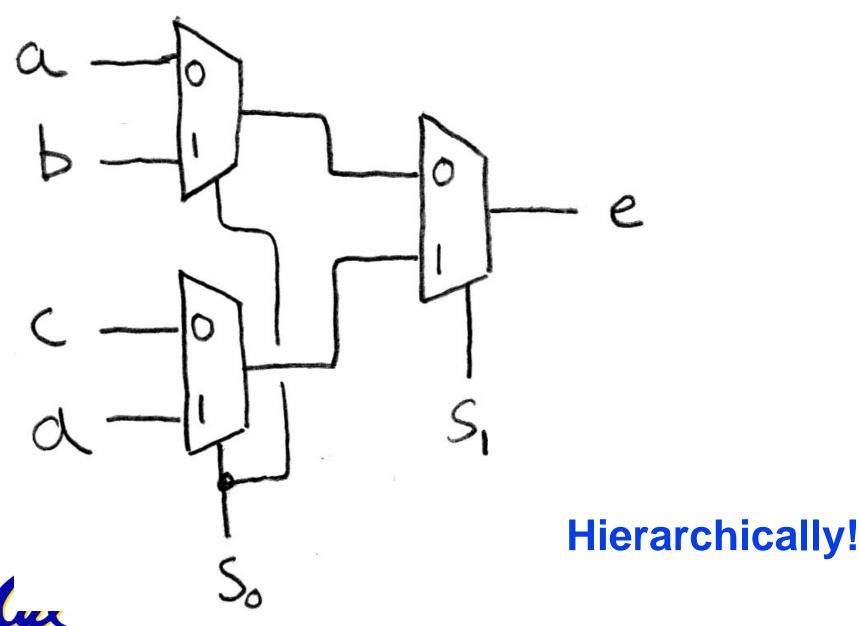


**4-to-1 Multiplexor?** 



CS 61C L15 State & Blocks (19)

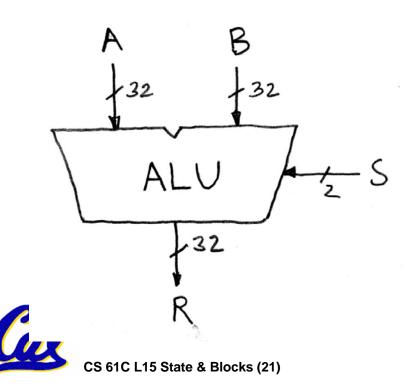
#### **An Alternative Approach**



CS 61C L15 State & Blocks (20)

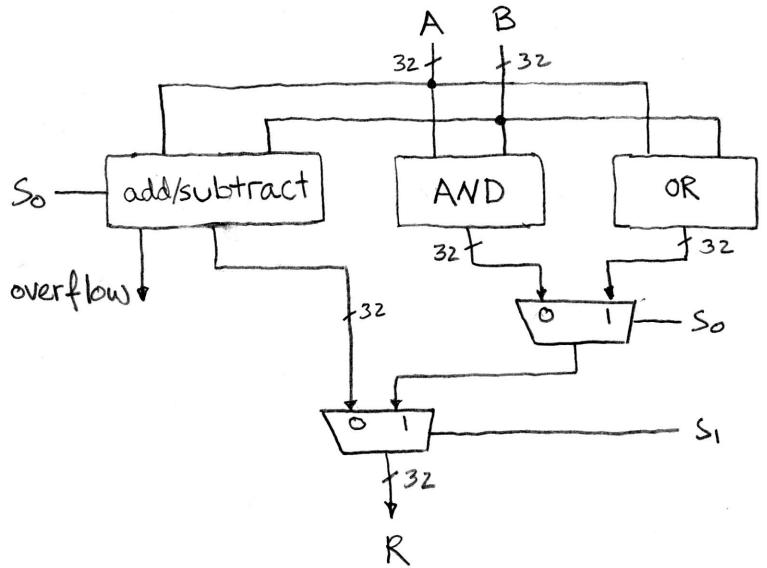
## **Arithmetic and Logic Unit**

- Most processors contain a logic block called "Arithmetic/Logic Unit" (ALU)
- We'll show you an easy one that does ADD, SUB, bitwise AND, bitwise OR



when S=00, R=A+B when S=01, R=A-B when S=10, R=A AND B when S=11, R=A OR B

#### **Our simple ALU**



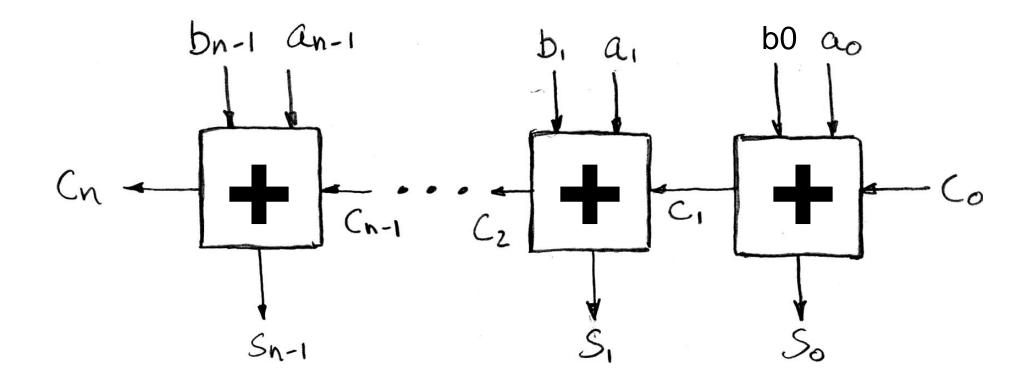


**Adder/Subtracter Design -- how?** 

- Truth-table, then determine canonical form, then minimize and implement as we've seen before
- Look at breaking the problem down into smaller pieces that we can cascade or hierarchically layer

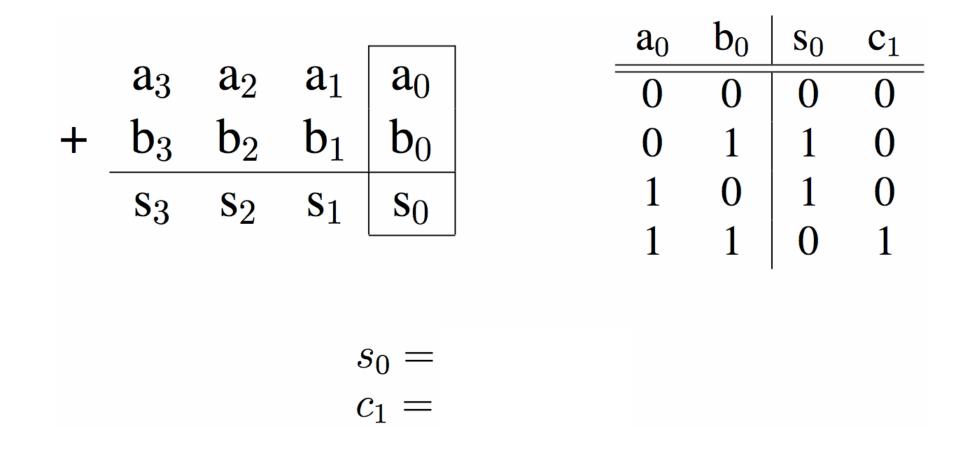


#### **N 1-bit adders** $\Rightarrow$ **1 N-bit adder**





#### Adder/Subtracter – One-bit adder LSB...





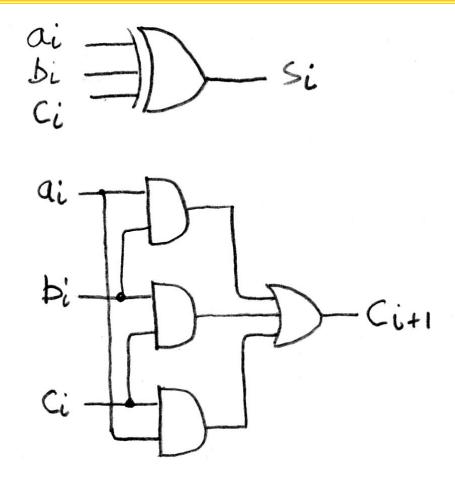
### Adder/Subtracter – One-bit adder (1/2)...

|   |            |            |                       |                |   | $\mathbf{a}_i$ | $\mathbf{b}_i$ | $\mathbf{c}_i$ | $\mathbf{s}_i$ | $\mathbf{c}_{i+1}$ |
|---|------------|------------|-----------------------|----------------|---|----------------|----------------|----------------|----------------|--------------------|
|   |            |            |                       |                |   | 0              | 0              | 0              | 0              | 0                  |
|   |            |            |                       |                |   | 0              | 0              | 1              | 1              | 0                  |
|   | $a_3$      |            | <b>a</b> <sub>1</sub> |                |   | 0              | 1              | 0              | 1              | 0                  |
| + | $b_3$      | $b_2$      | $b_1$                 | $\mathbf{b}_0$ |   | 0              | 1              | 1              | 0              | 1                  |
|   | <b>S</b> 3 | <b>S</b> 2 | <b>s</b> <sub>1</sub> | S <sub>0</sub> | - | 1              | 0              |                |                |                    |
|   | 0          | -          |                       |                |   | 1              | 0              | 1              | 0              | 1                  |
|   |            |            |                       |                |   | 1              | 1              | 0              | 0              | 1                  |
|   |            |            |                       |                |   | 1              | 1              | 1              | 1              | 1                  |

 $s_i = c_{i+1} =$ 



#### Adder/Subtracter – One-bit adder (2/2)...

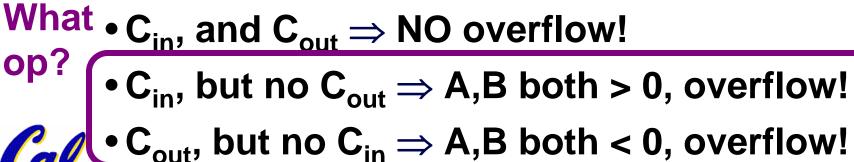


$$s_i = \operatorname{XOR}(a_i, b_i, c_i)$$
  
$$c_{i+1} = \operatorname{MAJ}(a_i, b_i, c_i) = a_i b_i + a_i c_i + b_i c_i$$



Consider a 2-bit signed # & overflow:

- $\cdot 10 = -2 + -2 \text{ or } -1$
- •11 = -1 + -2 only
- $\bullet 00 = 0 \text{ NOTHING!}$
- •01 = 1 + 1 only
- Highest adder
  - $C_1 = Carry-in = C_{in}, C_2 = Carry-out = C_{out}$
  - No  $C_{out}$  or  $C_{in} \Rightarrow$  NO overflow!





a ao

#

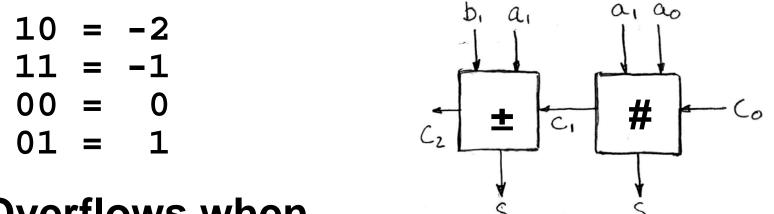
b, a,

<u>+</u>

 $C_2$ 

C,

Consider a 2-bit signed # & overflow:

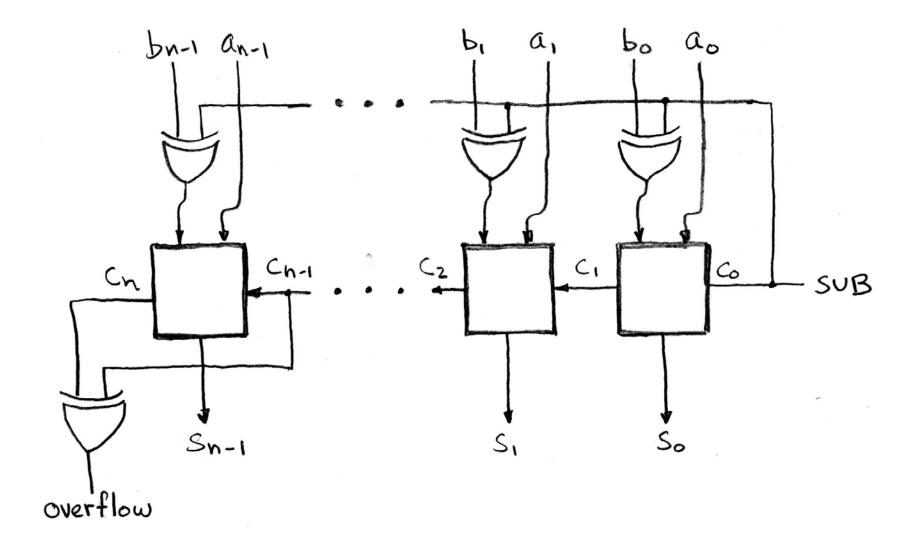


- Overflows when...
  - C<sub>in</sub>, but no C<sub>out</sub> ⇒ A,B both > 0, overflow!
    C<sub>out</sub>, but no C<sub>in</sub> ⇒ A,B both < 0, overflow!</li>

# overflow $= c_n \operatorname{XOR} c_{n-1}$



#### **Extremely Clever Subtractor**





- A. Truth table for mux with 4 control signals has 2<sup>4</sup> rows
- B. We could cascade N 1-bit shifters to make 1 N-bit shifter for sll, srl
- C. If 1-bit adder delay is T, the N-bit adder delay would also be T



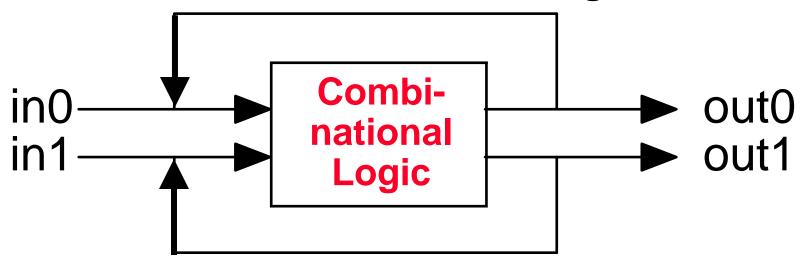
"And In conclusion..."

- Use muxes to select among input
  - S input bits selects 2S inputs
  - Each input can be n-bits wide, indep of S
- Implement muxes hierarchically
- ALU can be implemented using a mux
  - Coupled with basic block elements
- N-bit adder-subtractor done using N 1bit adders with XOR gates on input
  - XOR serves as conditional inverter



# **State Circuits Overview (Extra Slides)**

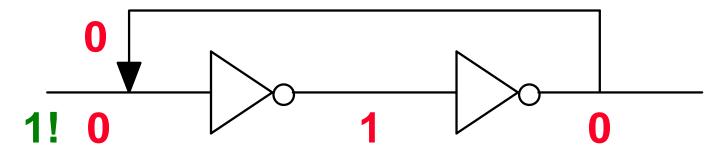
• State circuits have feedback, e.g.



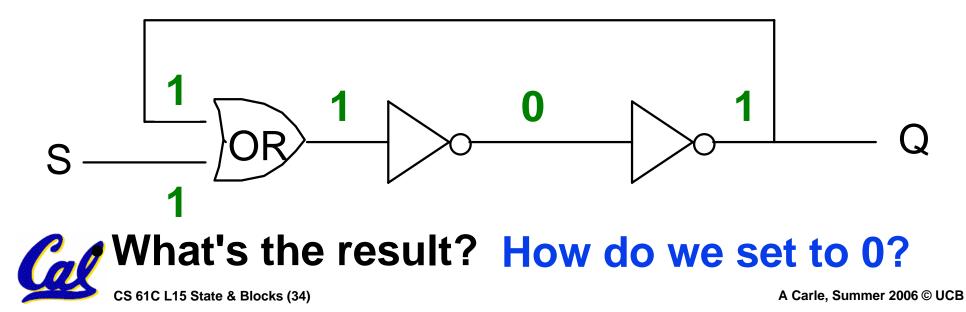
- Output is function of inputs + fed-back signals.
- Feedback signals are the circuit's state.
- What aspects of this circuit might cause complications?

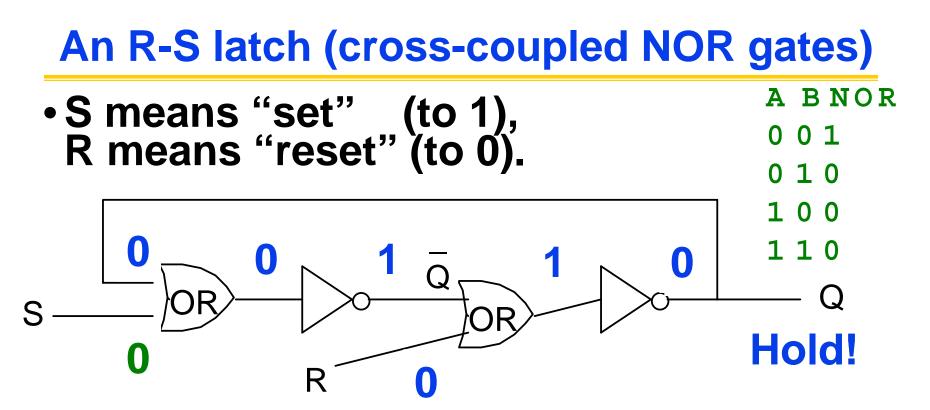


#### A simpler state circuit: two inverters

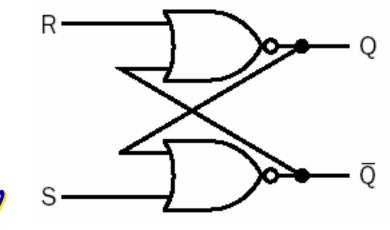


- When started up, it's internally stable.
- Provide an or gate for coordination:





Adding Q' gives standard RS-latch:



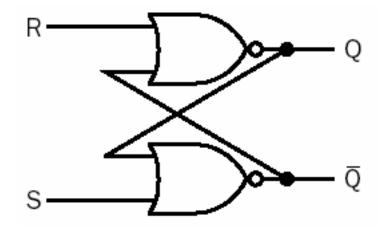
- Truth table
- SRQ
- 0 0 hold (keep value)
- 010
- 101
- 1 1 unstable



CS 61C L15 State & Blocks (35)

# An R-S latch (in detail)

#### **Truth table**



A B NOR 0 0 1 0 1 0

100

110

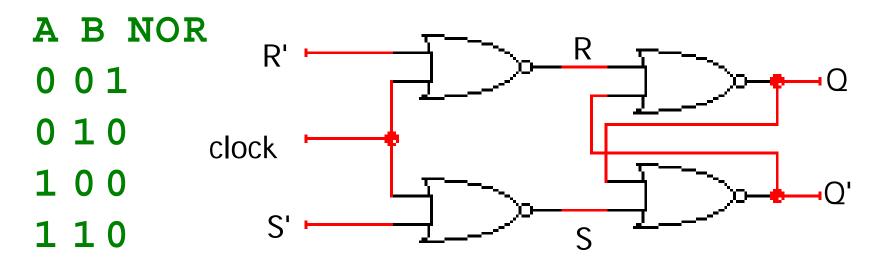
1 11 x x unstable



CS 61C L15 State & Blocks (36)

# **Controlling R-S latch with a clock**

Can't change R and S while clock is active.

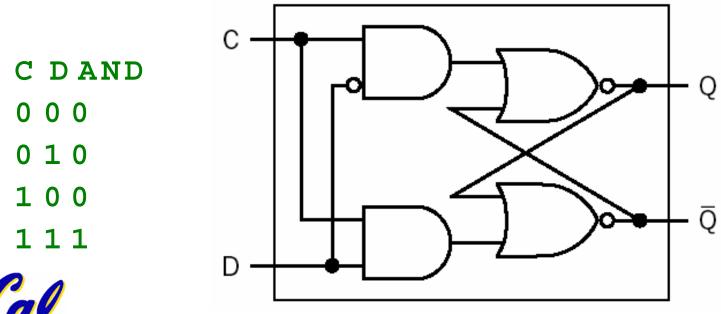


#### Clocked latches are called *flip-flops*.



D flip-flop are what we really use

- Inputs C (clock) and D.
- When C is 1, latch open, output = D (even if it changes, "transparent latch")
- When C is 0, latch closed, output = stored value.

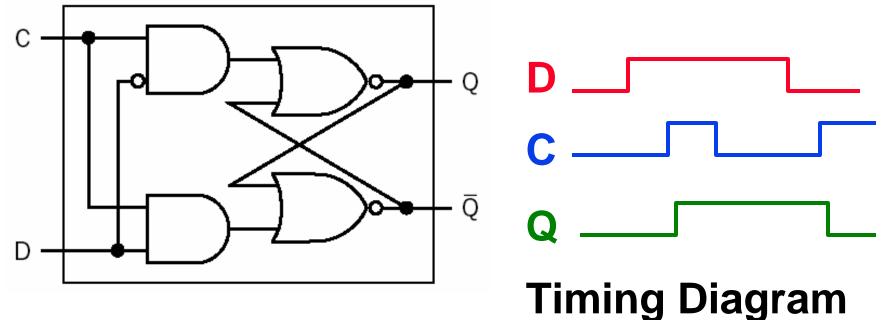




# **D** flip-flop details

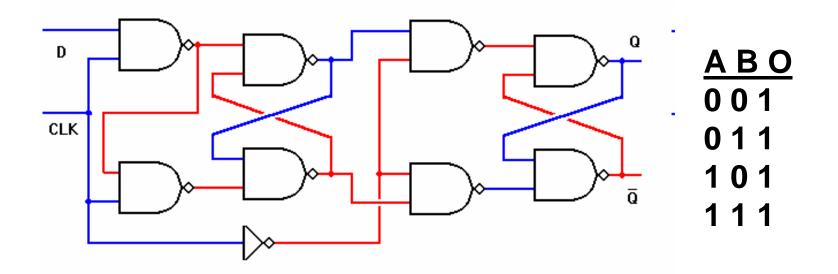
### • We don't like transparent latches

• We can build them so that the latch is only open for an instant, on the rising edge of a clock (as it goes from  $0 \Rightarrow 1$ )









- This is a "rising-edge D Flip-Flop"
  - When the CLK transitions from 0 to 1 (rising edge) ...
    - $Q \leftarrow D$ ; Qbar  $\leftarrow not D$
  - All other times: Q ← Q; Qbar ← Qbar

