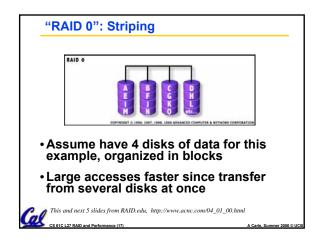
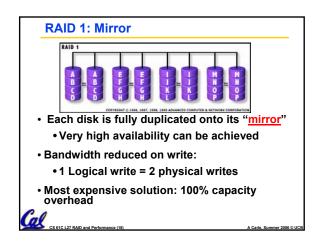
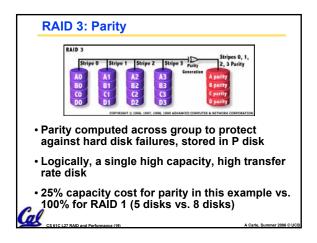
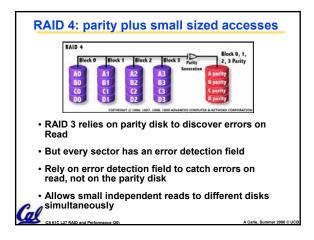
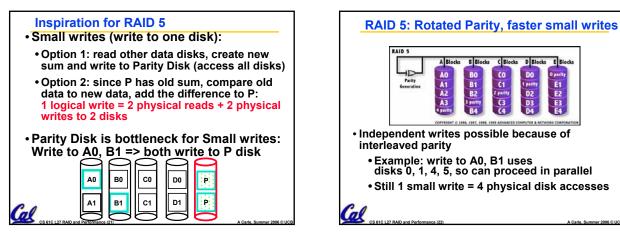

Outline	
• Disks Part 2	
• RAID	
Performance	
Ca	
CS 61C L27 RAID and Performance (11)	A Carle, Summer 2006 © UCE

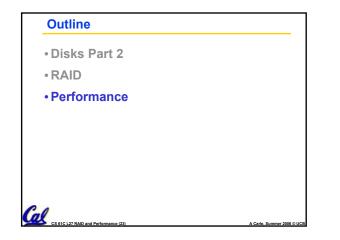


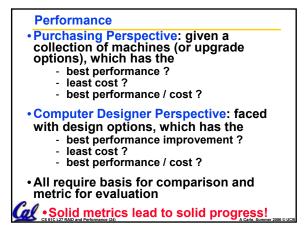

Replace Small Number of Large Disks with				
Large Number of Small Disks! (1988 Disks)				
		IBM 3.5" 0061	<u>x70</u>	
Capacity	20 GBytes	320 MBytes	23 GBytes	
Volume	97 cu. ft.	0.1 cu. ft.	11 cu. ft. <mark>9X</mark>	
Power	3 KW	11 W	1 KW 3X	
Data Rate	15 MB/s	1.5 MB/s	120 MB/s <mark>8X</mark>	
I/O Rate	600 I/Os/s	55 I/Os/s	3900 IOs/s <mark>6X</mark>	
MTTF	250 KHrs	50 KHrs	??? Hrs	
Cost	\$250K	\$2K	\$150K	
Disk Arrays potentially high performance, high MB per cu. ft., high MB per KW, but what about reliability?				

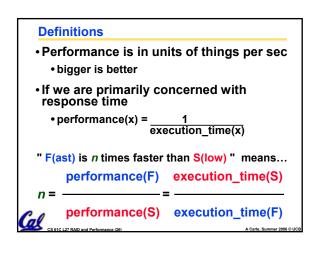


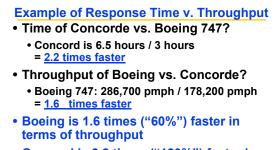




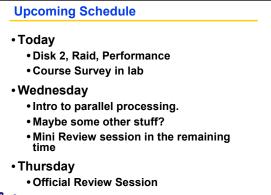








	Two Notions of "Performance"				
	Plane	DC to Paris	Top Speed	Passen- gers	Throughput (pmph)
	Boeing 747	6.5 hours	610 mph	470	286,700
	BAD/Sud Concorde	3 hours	1350 mph	132	178,200
•Which has higher performance? •Time to deliver 1 passenger? •Time to deliver 400 passengers? •In a computer, time for 1 job called					
Response Time or Execution Time •In a computer, jobs per day called					
<u>Cale Throughput</u> or <u>Bandwidth</u>					
	CS 61C L 27 RAID and Performance (25) A Carle Summer 2006 © U				A Carle, Summer 2006 @ UCI



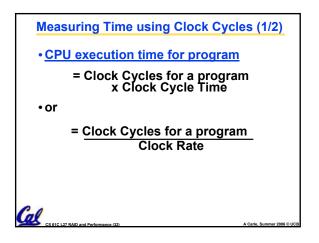
• Concord is 2.2 times ("120%") faster in terms of flying time (response time)

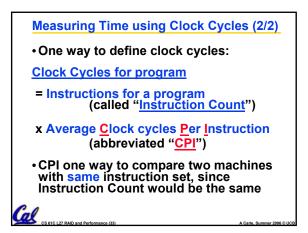
We will focus primarily on execution

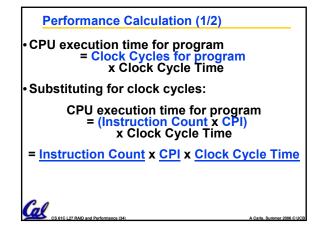
- Final Exam:
 - Friday, August 18, 11:00 2:00
 - 10 Evans (Same as Midterm 1)
 - Same rules as Midterms, except you can now have a two-sided cheat sheet
- Project 4: Due Tonight!
- •HW7: Due Friday, but...
 - It is optional
 - The grade will be dropped if it hurts your overall semester grade
- •You may want to review it before the final

Friday: Final!

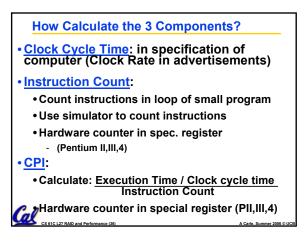
What is Time? • Straightforward definition of time: • Total time to complete a task include

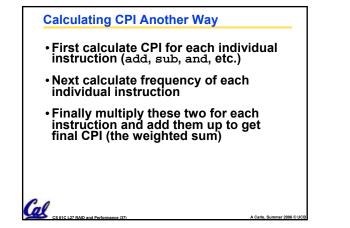

- Total time to complete a task, including disk accesses, memory accesses, I/O activities, operating system overhead, ...
- "<u>real time</u>", "<u>response time</u>", "<u>elapsed time</u>" or "<u>wall time</u>"
- Alternative: just time processor (CPU) is working only on your program (since multiple processes running at same time)
 - "CPU execution time" or "CPU time"
- Often divided into system CPU time (in OS) and user CPU time (in user program)

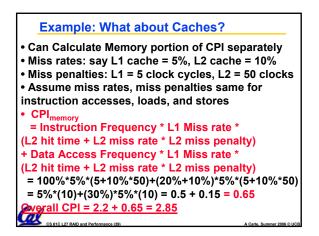

How to Measure Time?

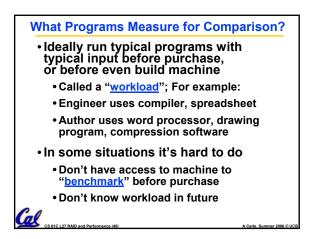

• User Time \Rightarrow seconds

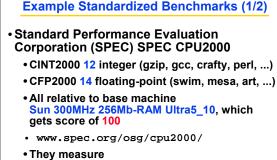
Cal


- CPU Time: Computers constructed using a <u>clock</u> that runs at a constant rate and determines when events take place in the hardware
 - These discrete time intervals called <u>clock cycles</u> (or informally <u>clocks</u> or <u>cycles</u>)
 - Length of <u>clock period</u>: <u>clock cycle time</u> (e.g., 2 nanoseconds or 2 ns) and <u>clock</u> <u>rate</u> (e.g., 500 megahertz, or 500 MHz), which is the inverse of the clock period; <u>use these!</u>






Performance Calculation (2/2)			
CPU time = Instructions x Cycles x Program Instruction	Seconds Cycle		
CPU time = instructions x Cycles x Program Instruction			
CPU time = Instructions x Cycles x Program Instruction CPU time = Seconds			
Program Product of all 3 terms: if missing a term, can't			
predict time, the real measure of pe	rformance		



Example (RISC processor)				
Ор	Freq _i	CPI _i	Prod	(% Time)
ALU	50%	1	.5	(23%)
Load	20%	5	1.0	(45%)
Store	10%	3	.3	(14%)
Branch	20%	2	.4	(18%)
Instruction Mix 2.2 (Where time spent)				
 What if Branch instructions twice as fast? 				
CS 61C L27 RAID and Perf	formance (38)			A Carle. Summer 2006 © UC

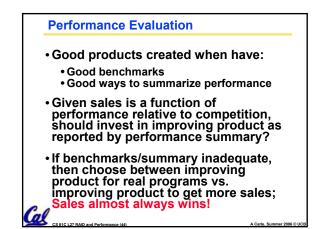
- System speed (SPECint2000)

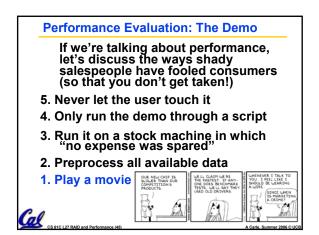
al

- System throughput (SPECint_rate2000)

Example Standardized Benchmarks (2/2)

• SPEC


Cal


- · Benchmarks distributed in source code
- Big Company representatives select workload - Sun, HP, IBM, etc.
- · Compiler, machine designers target benchmarks, so try to change every 3 years

Example PC Workload Benchmark

• PCs: Ziff-Davis Benchmark Suite

- "Business Winstone is a system-level, application-based benchmark that measures a PC's overall performance when running today's top-selling Windows-based 32-bit applications... it doesn't mimic what these packages do; it runs real applications through a series of scripted activities and uses the time a PC takes to complete those activities to produce its performance scores.
- Also tests for CDs, Content-creation, Audio, 3D graphics, battery life
- http://www.etestinglabs.com/benchmarks/

- Benchmarks
 - Attempt to predict performance
 - Updated every few years
 - Measure everything from simulation of desktop graphics programs to battery life
- Megahertz Myth

CS 61C L27 RAID and Perfo

• MHz ≠ performance, it's just one factor

