
CS61C L28 Parallel Computing (1) A Carle, Summer 2006 © UCB

inst.eecs.berkeley.edu/~cs61c/su06
CS61C : Machine Structures

Lecture #28: Parallel Computing + Summary

2006-08-16

Andy Carle
CS61C L28 Parallel Computing (2) A Carle, Summer 2006 © UCB

What Programs Measure for Comparison?
° Ideally run typical programs with
typical input before purchase,
or before even build machine

• Called a “workload”; For example:
• Engineer uses compiler, spreadsheet
• Author uses word processor, drawing
program, compression software

° In some situations it’s hard to do
• Don’t have access to machine to
“benchmark” before purchase

• Don’t know workload in future

CS61C L28 Parallel Computing (3) A Carle, Summer 2006 © UCB

Example Standardized Benchmarks (1/2)

°Standard Performance Evaluation
Corporation (SPEC) SPEC CPU2000

• CINT2000 12 integer (gzip, gcc, crafty, perl, ...)
• CFP2000 14 floating-point (swim, mesa, art, ...)
• All relative to base machine
Sun 300MHz 256Mb-RAM Ultra5_10, which
gets score of 100

• www.spec.org/osg/cpu2000/

• They measure
- System speed (SPECint2000)
- System throughput (SPECint_rate2000)

CS61C L28 Parallel Computing (4) A Carle, Summer 2006 © UCB

Example Standardized Benchmarks (2/2)
°SPEC

• Benchmarks distributed in source code
• Big Company representatives select workload

- Sun, HP, IBM, etc.
• Compiler, machine designers target
benchmarks, so try to change every 3 years

CS61C L28 Parallel Computing (5) A Carle, Summer 2006 © UCB

Example PC Workload Benchmark
°PCs: Ziff-Davis Benchmark Suite

• “Business Winstone is a system-level,
application-based benchmark that measures
a PC's overall performance when running
today's top-selling Windows-based 32-bit
applications… it doesn't mimic what these
packages do; it runs real applications
through a series of scripted activities and
uses the time a PC takes to complete those
activities to produce its performance scores.

• Also tests for CDs, Content-creation, Audio,
3D graphics, battery life

http://www.etestinglabs.com/benchmarks/

CS61C L28 Parallel Computing (6) A Carle, Summer 2006 © UCB

Performance Evaluation

°Good products created when have:
• Good benchmarks
• Good ways to summarize performance

°Given sales is a function of
performance relative to competition,
should invest in improving product as
reported by performance summary?

° If benchmarks/summary inadequate,
then choose between improving
product for real programs vs.
improving product to get more sales;
Sales almost always wins!

CS61C L28 Parallel Computing (7) A Carle, Summer 2006 © UCB

Performance Evaluation: The Demo
If we’re talking about performance,
let’s discuss the ways shady
salespeople have fooled consumers
(so that you don’t get taken!)

5. Never let the user touch it
4. Only run the demo through a script
3. Run it on a stock machine in which

“no expense was spared”
2. Preprocess all available data
1. Play a movie

CS61C L28 Parallel Computing (8) A Carle, Summer 2006 © UCB

Performance Summary
°Benchmarks

• Attempt to predict performance
• Updated every few years
• Measure everything from simulation of
desktop graphics programs to battery life

°Megahertz Myth
• MHz ≠ performance, it’s just one factor

CS61C L28 Parallel Computing (9) A Carle, Summer 2006 © UCB

Scientific Computing

° Traditional Science
1) Produce theories and designs on “paper”
2) Perform experiments or build systems
• Has become difficult, expensive, slow, and

dangerous for fields on the leading edge

° Computational Science
• Use ultra-high performance computers to

simulate the system we’re interested in

° Acknowledgement
• Many of the concepts and some of the content

of this lecture were drawn from Prof. Jim
Demmel’s CS 267 lecture slides which can be
found at http://www.cs.berkeley.edu/~demmel/cs267_Spr05/

CS61C L28 Parallel Computing (10) A Carle, Summer 2006 © UCB

Example Applications

° Science
• Global climate modeling
• Biology: genomics; protein folding; drug design
• Astrophysical modeling
• Computational Chemistry
• Computational Material Sciences and Nanosciences

° Engineering
• Semiconductor design
• Earthquake and structural modeling
• Computation fluid dynamics (airplane design)
• Combustion (engine design)
• Crash simulation

° Business
• Financial and economic modeling
• Transaction processing, web services and search engines

° Defense
• Nuclear weapons -- test by simulations
• Cryptography

CS61C L28 Parallel Computing (11) A Carle, Summer 2006 © UCB

Performance Requirements

° Terminology
• Flop – Floating point operation
• Flops/second – standard metric for expressing

the computing power of a system

° Global Climate Modeling
• Divide the world into a grid (e.g. 10 km spacing)
• Solve fluid dynamics equations to determine

what the air has done at that point every minute
- Requires about 100 Flops per grid point per minute

• This is an extremely simplified view of how the
atmosphere works, to be maximally effective
you need to simulate many additional systems
on a much finer grid

CS61C L28 Parallel Computing (12) A Carle, Summer 2006 © UCB

Performance Requirements (2)

° Computational Requirements
• To keep up with real time (i.e. simulate one

minute per wall clock minute):
8 Gflops/sec

• Weather Prediction (7 days in 24 hours):
56 Gflops/sec

• Climate Prediction (50 years in 30 days):
4.8 Tflops/sec

• Climate Prediction Experimentation (50 years in
12 hours): 288 Tflops/sec

° Perspective
• Pentium 4 1.4GHz, 1GB RAM, 4x100MHz FSB

- ~320 Mflops/sec, effective
- Climate Prediction would take ~1233 years

Reference:http://www.tc.cornell.edu/~lifka/Papers/SC2001.pdf

CS61C L28 Parallel Computing (13) A Carle, Summer 2006 © UCB

What Can We Do?

°Wait
• Moore’s law tells us things are getting
better; why not stall for the moment?

°Parallel Computing!

CS61C L28 Parallel Computing (14) A Carle, Summer 2006 © UCB

Prohibitive Costs

° Rock’s Law
• The cost of building a semiconductor chip

fabrication plant that is capable of producing
chips in line with Moore’s law doubles every four
years

CS61C L28 Parallel Computing (15) A Carle, Summer 2006 © UCB

How fast can a serial computer be?

° Consider a 1 Tflop/sec sequential machine:
• Data must travel some distance, r, to get
from memory to CPU

• To get 1 data element per cycle, this
means 1012 times per second at the
speed of light, c = 3x108 m/s. Thus
r < c/1012 = 0.3 mm

- So all of the data we want to process must
be stored within 0.3 mm of the CPU

° Now put 1 Tbyte of storage in a 0.3 mm x 0.3 mm area:
• Each word occupies about 3 square
Angstroms, the size of a very small atom

• Maybe someday, but it most certainly
isn’t going to involve transistors as we
know them

CS61C L28 Parallel Computing (16) A Carle, Summer 2006 © UCB

What is Parallel Computing?

°Dividing a task among multiple
processors to arrive at a unified
(meaningful) solution

• For today, we will focus on systems with
many processors executing identical
code

°How is this different from
Multiprogramming (which we’ve
touched on some in this course)?

°How is this different from Distributed
Computing?

CS61C L28 Parallel Computing (17) A Carle, Summer 2006 © UCB

Recent History

° Parallel Computing as a field exploded in popularity in the mid-1990s
° This resulted in an “arms race” between universities, research labs,

and governments to have the fastest supercomputer in the world

Source:
top500.org

CS61C L28 Parallel Computing (18) A Carle, Summer 2006 © UCB

Current Champions

BlueGene/L – IBM/DOE
Rochester, United States
32768 Processors, 70.72 Tflops/sec
0.7 GHz PowerPC 440

Columbia – NASA/Ames
Mountain View, United States
10160 Processors, 51.87 Tflops/sec
1.5 GHz SGI Altix

Earth Simulator – Earth Simulator Ctr.
Yokohama, Japan
5120 Processors, 35.86 Tflops/sec
SX6 Vector

Data Source: top500.org

CS61C L28 Parallel Computing (19) A Carle, Summer 2006 © UCB

Administrivia

° Proj 4 Due Friday
° HW8 (Optional) Due Friday
° Final Exam on Friday

• Yeah, sure, you can have 3 one-sided cheat sheets
- But I really don’t think they’ll help you all that much

° Course Survey in lab today

CS61C L28 Parallel Computing (20) A Carle, Summer 2006 © UCB

Parallel Programming

°Processes and Synchronization
°Processor Layout
°Other Challenges

• Locality
• Finding parallelism
• Parallel Overhead
• Load Balance

CS61C L28 Parallel Computing (21) A Carle, Summer 2006 © UCB

Processes

°We need a mechanism to intelligently
split the execution of a program

°Fork:
int main(…){
int pid = fork();
if (pid == 0) printf(“I am the child.”);
if (pid != 0) printf(“I am the parent.”);
return 0;

}

°What will this print?
CS61C L28 Parallel Computing (22) A Carle, Summer 2006 © UCB

Processes (2)

°We don’t know! Two potential
orderings:

• I am the child.I am the parent.
• I am the parent.I am the child.
• This situation is a simple race condition.
This type of problem can get far more
complicated…

°Modern parallel compilers and runtime
environments hide the details of
actually calling fork() and moving the
processes to individual processors,
but the complexity of synchronization
remains

CS61C L28 Parallel Computing (23) A Carle, Summer 2006 © UCB

Synchronization

°How do processors communicate with
each other?

°How do processors know when to
communicate with each other?

°How do processors know which other
processor has the information they
need?

°When you are done computing, which
processor, or processors, have the
answer?

CS61C L28 Parallel Computing (24) A Carle, Summer 2006 © UCB

Synchronization (2)

°Some of the logistical complexity of
these operations is reduced by
standard communication frameworks

• Message Passing Interface (MPI)

°Sorting out the issue of who holds
what data can be made easier with the
use of explicitly parallel languages

• Unified Parallel C (UPC)
• Titanium (Parallel Java Variant)

°Even with these tools, much of the
skill and challenge of parallel
programming is in resolving these
problems

CS61C L28 Parallel Computing (25) A Carle, Summer 2006 © UCB

Processor Layout

Generalized View

P P P P

Interconnection Network

M M MM

Memory

M = Memory local to one processor

Memory = Memory local to all other processors

CS61C L28 Parallel Computing (26) A Carle, Summer 2006 © UCB

Processor Layout (2)

P1

bus

$

memory

P2

$

Pn

$

interconnect

P0

memory

NI

. . .

P1

memory

NI Pn

memory

NI

Shared Memory

Distributed Memory

CS61C L28 Parallel Computing (27) A Carle, Summer 2006 © UCB

Processor Layout (3)

°Clusters of SMPs
• n of the N total processors share one
memory

• Simple shared memory communication
within one cluster of n processors

• Explicit network-type calls to
communicate from one group of n to
another

°Understanding the processor layout
that your application will be running
on is crucial!

CS61C L28 Parallel Computing (28) A Carle, Summer 2006 © UCB

Administrivia

° There IS discussion today
• Lab tomorrow will be an open office hour to

review for the final
• Review session tomorrow instead of lecture
• Make sure to talk to your TAs and get your labs

taken care of.

° If you did well in CS3 or 61{A,B,C}
(A- or above) and want to be on staff?

• Usual path: Lab assistant ⇒ Reader ⇒ TA

• Fill in form outside 367 Soda before first week of
semester…

• We strongly encourage anyone who gets an A- or
above in the class to follow this path…

CS61C L28 Parallel Computing (29) A Carle, Summer 2006 © UCB

Parallel Locality
° We now have to expand our view of the memory hierarchy to include

remote machines
° Remote memory behaves like a very fast network

• Bandwidth vs. Latency becomes important

Regs

Memory

Remote Memory

Local and Remote Disk

Instr. Operands

Blocks

Large Data Blocks

Cache
Blocks

CS61C L28 Parallel Computing (30) A Carle, Summer 2006 © UCB

Amdahl’s Law

°Applications can almost never be
completely parallelized

°Let s be the fraction of work done
sequentially, so (1-s) is fraction
parallelizable, and P = number of
processors

Speedup(P) = Time(1)/Time(P)
<= 1/(s + (1-s)/P)
<= 1/s

°Even if the parallel portion of your
application speeds up perfectly, your
performance may be limited by the
sequential portion

CS61C L28 Parallel Computing (31) A Carle, Summer 2006 © UCB

Parallel Overhead

° Given enough parallel work, these are the
biggest barriers to getting desired speedup

° Parallelism overheads include:
• cost of starting a thread or process
• cost of communicating shared data
• cost of synchronizing
• extra (redundant) computation

° Each of these can be in the range of
milliseconds (many millions of flops) on
some systems

° Tradeoff: Algorithm needs sufficiently large
units of work to run fast in parallel (I.e. large
granularity), but not so large that there is
not enough parallel work

CS61C L28 Parallel Computing (32) A Carle, Summer 2006 © UCB

Load Balance

° Load imbalance is the time that some processors in
the system are idle due to

• insufficient parallelism (during that phase)
• unequal size tasks

° Examples of the latter
• adapting to “interesting parts of a domain”
• tree-structured computations
• fundamentally unstructured problems

° Algorithms need to carefully balance load

CS61C L28 Parallel Computing (33) A Carle, Summer 2006 © UCB

Summary

°Parallel Computing is a multi-billion
dollar industry driven by interesting
and useful scientific computing
applications

° It is extremely unlikely that sequential
computing will ever again catch up
with the processing power of parallel
systems

°Programming parallel systems can be
extremely challenging, but is built
upon many of the concepts you’ve
learned this semester in 61c

CS61C L28 Parallel Computing (34) A Carle, Summer 2006 © UCB

CS61C: So what's in it for me? (1st lecture)
Learn some of the big ideas in CS & engineering:

° 5 Classic components of a Computer
° Principle of abstraction, systems built as layers
° Data can be anything (integers, floating point,

characters): a program determines what it is
° Stored program concept: instructions just data
° Compilation v. interpretation thru system layers
° Principle of Locality, exploited via a memory

hierarchy (cache)
° Greater performance by exploiting parallelism

(pipelining)
° Principles/Pitfalls of Performance Measurement

CS61C L28 Parallel Computing (35) A Carle, Summer 2006 © UCB

Conventional Wisdom (CW) in Comp Arch
° Old CW: Power free, Transistors expensive
° New CW: Power expensive, Transistors free

• Can put more on chip than can afford to turn on

° Old CW: Chips reliable internally, errors at pins

° New CW: ≤ 65 nm ⇒ high error rates
° Old CW: CPU manufacturers minds closed
° New CW: Power wall + Memory gap = Brick wall

• New idea receptive environment

° Old CW: Uniprocessor performance 2X / 1.5 yrs
° New CW: 2X CPUs per socket / ~ 2 to 3 years

• Additional simple processors, more power efficientTh
an

ks
 to

 D
av

e
Pa

tte
rs

on
 fo

r t
he

se

CS61C L28 Parallel Computing (36) A Carle, Summer 2006 © UCB

Massively Parallel Socket
° Processor = new transistor?

• Does it only help
power/cost/performance?

° Intel 4004 (1971): 4-bit processor,
2312 transistors, 0.4 MHz,
10 µm PMOS, 11 mm2 chip

° RISC II (1983): 32-bit, 5 stage
pipeline, 40,760 transistors, 3 MHz,
3 µm NMOS, 60 mm2 chip

• 4004 shrinks to ~ 1 mm2 at 3 micron

° 125 mm2 chip, 65 nm CMOS
= 2312 RISC IIs + Icache + Dcache

• RISC II shrinks to ~ 0.02 mm2 at 65 nm
• Caches via DRAM or 1 transistor SRAM (www.t-ram.com)?
• Proximity Communication at > 1 TB/s ?
• Ivan Sutherland @ Sun spending time in Berkeley!

CS61C L28 Parallel Computing (37) A Carle, Summer 2006 © UCB

20th vs. 21st Century IT Targets

° 20th Century Measure of Success
• Performance (peak vs. delivered)
• Cost (purchase cost vs. ownership cost, power)

° 21st Century Measure of Success? “SPUR”
• Security
• Privacy
• Usability
• Reliability

° Massive parallelism greater chance (this time) if
• Measure of success is SPUR vs. only cost-perf
• Uniprocessor performance improvement decelerates

CS61C L28 Parallel Computing (38) A Carle, Summer 2006 © UCB

Other Implications

°Need to revisit chronic unsolved problem
• Parallel programming!!

° Implications for applications:
• Computing power >>> CDC6600, Cray XMP
(choose your favorite) on an economical die
inside your watch, cell phone or PDA

- On your body health monitoring
- Google + library of congress on your PDA

°As devices continue to shrink…
• The need for great HCI critical as ever!

CS61C L28 Parallel Computing (39) A Carle, Summer 2006 © UCB

Taking advantage of Cal Opportunities

Why are we a top university?
• Research, reseach, research!
• Whether you want to go to grad school or
industry, you need someone to vouch for
you! (as is the case with the Mob)

°Techniques
• Find out what you like, do lots of web
research (read published papers), hit OH
of Prof, show enthusiasm & initiative (and
get to know grad students!)

°http://research.berkeley.edu/

CS61C L28 Parallel Computing (40) A Carle, Summer 2006 © UCB

UC-WISE and Curriculum Development

° Actively seeking undergrad volunteers to
work on the new UCWISE interface

• CS 199 Credit

° Developing UC-WISE based version of
CS61c

• Those of you who just took the course and are
interested in curriculum design are the perfect
people to help

° Andy needs undergrads!
• Work on interesting user interface design

issues related to curriculum development

° Contact Andy if you are interested in any of
these opportunities!

CS61C L28 Parallel Computing (41) A Carle, Summer 2006 © UCB

Penultimate slide: Thanks to the staff!

°TAs
• Chris
• Michael

°Reader
• Albert

Thanks to Dave Patterson, John
Wawrzynek, Dan Garcia, Mike

Clancy, Kurt Meinz, and everyone
else that has worked on these
lecture notes over the years.

CS61C L28 Parallel Computing (42) A Carle, Summer 2006 © UCB

The Future for Future Cal Alumni
°What’s The Future?
°New Millennium

• Internet, Wireless, Nanotechnology, ...
• Rapid Changes in Technology
• World’s Best Education
• Work Hard!

“The best way to predict the future is to
invent it” – Alan Kay

The Future is up to you!

