

Your login name:

cs61c-

A1

Problem 1

Recall the definition of

root

 in project 1. (The declaration of

struct entryNode

 appears
below.)

struct entryNode * root;

Give the type of each of the following expressions. The answer may be “error”.
Assume that

root

 and the fields that it points to have all been initialized with reason-
able values.

Definition of

struct entryNode

struct entryNode {
char * name;
struct entryNode * next; /*

sibling

 */
int isDirectory;
struct entryNode * parent;
union {

char * contents; /*

for a text file

 */
struct entryNode * entryList; /*

for a directory

 */
} entry;

};

[Note: we didn’t cover

union

 in fall08 CS 61CL.]

Problem 2

Add the two 2’s complement signed 8-bit values given below, and express your
answer in decimal.

01100110

+ 10010100

 11111010 = -6

(root->name)[3]

char if the name contains at least three
characters

&(root->parent)

struct entryNode **

root.next

error (should be “->”, not “.”)

root->contents

error (should be root->entry.contents)

Your login name:

cs61c-

A2

Problem 3

Complete the framework below to complete the implementation of the

appendFiles

function for project 1.

appendFiles

 takes four arguments:

• a pointer to the working directory;

• the name of a text file in the working directory;

• the name of another text file in the working directory;

• the name of a text file to create, which will contain the concatenation of the con-
tents of the first and the second files.

You may assume that the functions

located

 and

inserted

 have already been defined.
Here are their headers (the declaration of

struct entryNode

 appears with an earlier
problem on this exam):

/*

The list of entries is sorted alphabetically by name.

Return the result of inserting the new entry into the list

. */

struct entryNode * inserted (struct entryNode * newFile,
 struct entryNode * list);

/*

Return a pointer to the entry with the given name in the given list,

or

NULL

 if no such entry exists.

 */

struct entryNode * located (char * name, struct entryNode * list);

void appendFiles (struct entryNode * wd,
char * fileName1, char * fileName2, char * newName) {

struct entryNode * file1 = located (fileName1, wd->entry.entryList);
struct entryNode * file2 = located (fileName2, wd->entry.entryList);
if (file1 == NULL) {

printf ("append: file %s not found\n", fileName1);
} else if (file2 == NULL) {

printf ("append: file %s not found\n", fileName2);
} else if (file1->isDirectory) {

printf ("append: can't append directory %s\n", fileName1);
} else if (file2->isDirectory) {

printf ("append: can't append directory %s\n", fileName2);
} else if (located (newName, wd->entry.entryList)) {

printf ("append: can't overwrite file %s\n", newName);
} else {

struct entryNode * newFile;

// YOU PROVIDE THIS CODE.

wd->entry.entryList = inserted (newFile, wd->entry.entryList);
}

}

Your login name:

cs61c-

A3

// 2 points for malloc on node
newFile = (struct entryNode *) malloc (sizeof (struct entryNode));

// 2 points for malloc on name
newFile->name = (char *) malloc (strlen(newName)+1);

// 2 points for strcpy
strcpy (newFile->name, newName);

// 3 points for malloc on contents
newFile->entry.contents =

(char *) malloc (strlen(file1->entry.contents)
+ strlen(file2->entry.contents) + 1);

// 3 points for contents copy
strcpy (newFile->entry.contents, file1->entry.contents);
strcpy (newFile->entry.contents + strlen(file1->entry.contents),

file2->entry.contents);

// 2 points for the rest of newFile
newFile->isDirectory = 0;
newFile->parent = wd;

Your login name:

cs61c-

A4

Problem 4

Part a

Given the following definition,

struct node {
char name[12];
int value;

};

what is

sizeof (struct node)

? _____

Assume that the sizes of

char

s and

int

s are the same as on the 271 Soda computers.

1 point, all or none.
The answer is 16 bytes.

Problem 5

The following program includes the buggy

swap

 function encountered in a pre-lec-
ture quiz. Some students observed that this function “worked” because of values acci-
dentally in memory.

#include <stdio.h>

void swap (int *a, int *b) {
int *temp;
*temp = *a;
*a = *b;
*b = *temp;

}

int main () {
int x, y, z;
x = 2;
y = 3;

f (___________________________); /*

Supply the argument(s) to

 f. */
swap (&x, &y);
printf ("The values of x and y are now %d and %d.\n", x, y);
return 0;

}

In the space below, supply the definition of a function

f

, and supply a call to

f

 in the
blank above, that will

guarantee

 that the program will

not

 “work”, that is, it will
crash when the uninitialized

temp

 pointer is dereferenced. Also explain why your
call guarantees that

swap

 will crash.

Their solution has to have a local variable in the proper orientation that gets
initialized to 0, for example:

void f (int a, int* b) {
int c;
c = 0;

}

3 points in all:

Your login name:

cs61c-

A5

1 for the code;
1 for saying something reasonable about a position on the stack
1 for saying something reasonable about a value sure to produce a crash when

dereferenced

Your login name:

cs61c-

A6

Problem 6

Write a C function named

copyStrArray

 that, given an integer

count

 and an array

strArray

 that contains

count

 strings, returns a pointer to a complete (“deep”) copy of
the array. (In Java terminology, this would be a “clone”.) For example, the program
segment

int main (int argc, char **argv) {
char **ptr;
ptr = copyStrArray (argc, argv);

...

would place in

ptr

 a pointer to a copy of

argv

, the command-line argument structure.

You may use brackets and other array notation in your solution. You may assume
that there is sufficient free memory in which to build the copied structure. Make no
assumptions about the size of a pointer or a

char

. Include all necessary casts, and
allocate only as much memory as necessary. You may use any function in the

stdio

,

stdlib

, or

string libraries.

char **copyStrArray (int count, char **strArray) {
char **copy;
char **temp;
int k;
copy = (char **) malloc (count*sizeof(char *));
temp = copy;
for (k=0; k<count; k++) {

(*temp) = (char *) malloc (((strlen(*strArray)+1)*sizeof(char));
strcpy (*temp, *strArray);
temp++;
strArray++;

}
return copy;

}

If only one malloc, deduct 2; if no mallocs, deduct 4. Otherwise:
(1.5 points) malloc’ing the 1-d array of pointers (with the correct length and
cast);
(1.5 points) malloc’ing the space for each string (with the correct length and
cast);
(1.5 points) copying the string into the right place
(1.5 points) everything else: traversing the 1-d array of pointers; loop con-
trol, declarations, return value.
This probably works out to -1/2 per small error.

Problem 7

Consider the following C program.
#include <string.h>

int main () {
char oneName[10] = "xxxxxxxxx";
char* anotherName;

anotherName = oneName;

Your login name: cs61c-

A7

strcpy (anotherName, oneName);
oneName[1] = 'O';
return 0;

}

Draw the box-and-pointer diagram that represents the oneName and anotherName
arrays and their contents after executing this segment.

oneName ----> |"xOxxxxxxx"| followed by null char
 ^
 |
anotherName ---+

Anticipated errors: no sharing; only part sharing, no arrows, off-by-one
indexing.

two copies of string => -3
anotherName nil => -3
anotherName points to last char of oneName string => -2
anotherName points to oneName, which points to char => -2
off by one on char assignment => -1
off by one on count of chars => -1
didn’t show trailing null => -1

Problem 8

Write a C function named resultOfInsert that, given a string s, a character c, and a
position k between 0 and strlen(s), inclusive, returns the string that results from
inserting c into s at position k. For example,

resultOfInsert ("abcd", '_', 2)

should return the string "ab_cd". The insertion should not change the argument
string. You may use any functions declared in <string.h>. You don’t need to do any
error checking.

char *resultOfInsert (char *s, char c, int k) {

malloc call is worth 2 points, 1 for trying it and 1 for getting it right.
everything else is worth 3 points: -1 for each error, like off-by-one, forget-
ting terminating 0, using = for ==, forgetting to return something

Solution code:
char *resultOfInsert (char *s, char c, int pos) {

char *rtn = (char *) malloc (strlen(s)+2);
int k;
for (k=0; k<pos; k++) {

rtn[k] = s[k];
}
rtn[pos] = c;
for (k=pos; k<=strlen(s); k++) {

rtn[k+1] = s[k];
}
return rtn;

}

Your login name: cs61c-

A8

Another solution:
for (k=0, j=0; k<=strlen(s); k++, j++) {

if (k==pos) {
rtn[j] = c;
j++;

}
rtn[j] = s[k];

}

Your login name: cs61c-

A9

Problem 9

Consider the following C program.
#include <stdio.h>

struct foo {
int *ip;
int x;
struct foo *p;
int a[3];

};

int w[10] = {5, 22, 781, 0, 104, 25, 18, 24, 14, 30};

struct foo foo1 = {&w[4], 99, NULL, {11, 12, 13}};

struct foo foo2 = {w, 87, &foo1, {77, 78, 79}};

int main () {
foo1.p = &foo2;
printf("%d\n", foo1.x);
printf("%d\n", foo2->x);
printf("%d\n", foo2.p->x);
printf("%d\n", foo2.p.x);
printf("%d\n", foo1.a[1]);
printf("%d\n", foo1.a);
printf("%d\n", foo1.ip[2]);
printf("%d\n", *foo1.ip);
printf("%d\n", *(foo1.ip + 4));
printf("%d\n", *(foo1.a + 1));
printf("%d\n", foo1.a + 1);

}

Part a

Predict the result of each of the printf lines. (Some may cause compiler errors.)

line 1: 99
line 2: compiler error
line 3: 99
line 4: compiler error
line 5: 12
line 6: wrong format; 133580
line 7: 18
line 8: 104
line 9: 14
line 10: 12
line 11: wrong format; 133584

Part b

List three different ways you could fill in the blank in the statement below to print
the value 781 by extracting it from the data structures given in the above program.

printf("%d\n", ______);

Do the same for the values 77 and 87.

Your login name: cs61c-

A10

Some ways to get 781: w[2], *(w+2), foo2.ip[2], *(foo2.ip+2)
Some ways to get 77: foo2.a[0], *(foo2.a), foo1.p->a[0]
Some ways to get 87: foo2.x, foo1.p->x, (*foo1.p).x

Your login name: cs61c-

A11

Problem 10

Consider the following C function, intended to append the characters in the second
argument to the first argument (modifying the first argument in the process).

/* Precondition: s1 and s2 are correctly allocated C-style strings.

char* strcat (char *s1, char *s2) {
char* ptr = s1;
for (; *ptr != '\0'; ptr++) {
}
for (; *s2 != '\0'; s2++, ptr++) {

*ptr = *s2;
}
return s1;

}

Part a

The function compiles without error messages. However, it contains two flaws that
are likely to produce execution errors. Describe them.

The function may overfill the storage allocated to s1.
It doesn't put a terminating null character in the returned string.

Part b

Suppose that the flaws in the strcat function have been corrected. The program
below, calling the revised version of strcat, prints the characters abcdef as expected.

void main () {
char str1[10] = "abc";
char str2[10] = "def";
printf ("The result of concatenating str1 and str2 is %s.\n",
strcat (str1, str2));

}

Replace the arguments of the strcat call with equivalent arguments that use the &
or the * operator.

Replacement call: strcat (__________ , __________)

strcat (&str1[0], &str2[0]);
or
strcat (&*str1, &*str2);
or
strcat (*&str1, *&str2);

Problem 11

What is printed by the following C program segment, run on the EECS instructional
computers? (The notation 0x… specifies a hexadecimal constant; in a printf format
string, %x specifies output in base 16.)

int *ptr;
ptr = 0x1050;
printf ("%x\n", ptr--);

Your login name: cs61c-

A12

printf ("%x\n", ptr);

Answers: 1050, 104c
3 points: 1 for correct postincrement, 1 for correct base 16, 1 for correct
pointer arithmetic.

Your login name: cs61c-

A13

Problem 12

Convert the eight-bit binary value 11110000 to:

a. hexadecimal.
F0

b. decimal, interpreting it as a unsigned value.
15*16 = 240

c. decimal, interpreting it as a two’s complement signed value.
Complement and add 1 to find out what’s it’s the negative of. Answer = -16.

Problem 13

a. Describe the set of numbers that are represented by a 64-bit two’s complement
integer.

-2^63 to 2^63-1

b. Add the following 16-bit integers by hand, show the binary result and translate it
to hexadecimal.

 0001011011100101
+0011101001101100
 0101000101010001 = 5151 base 16

c. Multiply the following 16-bit unsigned integers by hand, show the binary result
and translate to hexadecimal

 0000000001101111
*0000000000001010

 11011110
+ 1101111000
= 10001010110
Check: 1010 = 10 base 10; 1101111 = 6*16 + 15 = 111 base 10; 10 * 111 = 1110 =
456 hex.

Problem 14

Suppose you are given the following (correct) C declarations.
char foo = 'A', garply[] = "MIPS", bar = 'C';

char *phi = &foo, *beta = phi, *gamma = garply;

In the following, some of the statements are incorrect or illegal; cross out any such
bad statements. Show in the spaces provided what the remaining print statements
will print when the program is executed.

printf("%c", *beta);
beta is a char*, so *beta is a char; A is printed

printf("%c", phi);
phi is a char*, not a char; ERROR

printf("%c", *gamma);
gamma is a char*; M is printed

printf("%s", bar);
bar is a char; ERROR

Your login name: cs61c-

A14

beta = garply;
beta is char *, which is assignment-compatible with garply

printf("%c", *(garply + 2));
prints P

printf("%s", &garply[1]);
prints IPS

garply = phi;
can’t assign to an array name; ERROR

printf("%c", *beta);
prints M

