
CS 70 Discrete Mathematics and Probability Theory
Fall 2012 Vazirani Note 13

An Application: Hashing
In this lecture, we will see a “killer app” of elementary probability in Computer Science:

• Suppose a hash function distributes keys evenly over a table of size n. How many (randomly chosen)
keys can we hash before the probability of a collision exceeds (say) 1

2 ?

As we shall see, this question can be tackled by an analysis of the balls-and-bins probability space which
we have already encountered.

As you may recall, a hash table is a data structure that supports the storage of sets of keys from a (large)
universe U (say, the names of all 250m people in the US). The operations supported are ADDing a key to the
set, DELETEing a key from the set, and testing MEMBERship of a key in the set. The hash function h maps U
to a table T of modest size. To ADD a key x to our set, we evaluate h(x) (i.e., apply the hash function to the
key) and store x at the location h(x) in the table T . All keys in our set that are mapped to the same table
location are stored in a simple linked list. The operations DELETE and MEMBER are implemented in similar
fashion, by evaluating h(x) and searching the linked list at h(x). Note that the efficiency of a hash function
depends on having only few collisions — i.e., keys that map to the same location. This is because the search
time for DELETE and MEMBER operations is proportional to the length of the corresponding linked list.

The question we are interested in here is the following: suppose our hash table T has size n, and that our
hash function h distributes U evenly over T .1 Assume that the keys we want to store are chosen uniformly at
random and independently from the universe U . What is the largest number, m, of keys we can store before
the probability of a collision reaches 1

2 ?

Let’s begin by seeing how this problem can be put into the balls and bins framework. The balls will be
the m keys to be stored, and the bins will be the n locations in the hash table T . Since the keys are chosen
uniformly and independently from U , and since the hash function distributes keys evenly over the table, we
can see each key (ball) as choosing a hash table location (bin) uniformly and independently from T . Thus
the probability space corresponding to this hashing experiment is exactly the same as the balls and bins
space.

We are interested in the event A that there is no collision, or equivalently, that all m balls land in different
bins. Clearly Pr[A] will decrease as m increases (with n fixed). Our goal is to find the largest value of m
such that Pr[A] remains above 1

2 . [Note: Really we are looking at different sample spaces here, one for each
value of m. So it would be more correct to write Prm rather than just Pr, to make clear which sample space
we are talking about. However, we will omit this detail.]

Let’s fix the value of m and try to compute Pr[A]. Since our probability space is uniform (each outcome has
probability 1

nm ), it’s enough just to count the number of outcomes in A. In how many ways can we arrange m
balls in n bins so that no bin contains more than one ball? Well, this is just the number of ways of choosing

1I.e., |U |= αn (the size of U is an integer multiple α of the size of T ), and for each y ∈ T , the number of keys x ∈U for which
h(x) = y is exactly α .
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m things out of n without replacement, which as we saw in Note 10 is

n× (n−1)× (n−2)×·· ·× (n−m+2)× (n−m+1).

This formula is valid as long as m≤ n: if m > n then clearly the answer is zero. From now on, we’ll assume
that m≤ n.

Now we can calculate the probability of no collision:

Pr[A] =
n(n−1)(n−2) . . .(n−m+1)

nm

=
n
n
× n−1

n
× n−2

n
×·· ·× n−m+1

n

=
(

1− 1
n

)
×
(

1− 2
n

)
×·· ·×

(
1− m−1

n

)
. (1)

Before going on, let’s pause to observe that we could compute Pr[A] in a different way, as follows. View the
probability space as a sequence of choices, one for each ball. For 1 ≤ i ≤ m, let Ai be the event that the ith
ball lands in a different bin from balls 1,2, . . . , i−1. Then

Pr[A] = Pr[
⋂n

i=1 Ai] = Pr[A1]×Pr[A2|A1]×Pr[A3|A1∩A2]×·· ·×Pr[Am|
⋂m−1

i=1 Ai]

= 1× n−1
n
× n−2

n
×·· ·× n−m+1

n

=
(

1− 1
n

)
×
(

1− 2
n

)
×·· ·×

(
1− m−1

n

)
.

Fortunately, we get the same answer as before! [You should make sure you see how we obtained the
conditional probabilities in the second line above. For example, Pr[A3|A1 ∩A2] is the probability that the
third ball lands in a different bin from the first two balls, given that those two balls also landed in different
bins. This means that the third ball has n−2 possible bin choices out of a total of n.]

Essentially, we are now done with our problem: equation (1) gives an exact formula for the probability of
no collision when m keys are hashed. All we need to do now is plug values m = 1,2,3, . . . into (1) until we
find that Pr[A] drops below 1

2 . The corresponding value of m (minus 1) is what we want.

But this is not really satisfactory: it would be much more useful to have a formula that gives the “critical”
value of m directly, rather than having to compute Pr[A] for m = 1,2,3, . . .. Note that we would have to do
this computation separately for each different value of n we are interested in: i.e., whenever we change the
size of our hash table.

So what remains is to “turn equation (1) around”, so that it tells us the value of m at which Pr[A] drops
below 1

2 . To do this, let’s take logs: this is a good thing to do because it turns the product into a sum, which
is easier to handle. We get

ln(Pr[A]) = ln
(

1− 1
n

)
+ ln

(
1− 2

n

)
+ · · ·+ ln

(
1− m−1

n

)
, (2)

where “ln” denotes natural (base e) logarithm. Now we can make use of a standard approximation for
logarithms: namely, if x is small then ln(1− x)≈−x. This comes from the Taylor series expansion

ln(1− x) =−x− x2

2
− x3

3
− . . . .

So by replacing ln(1−x) by−x we are making an error of at most ( x2

2 + x3

3 + · · ·), which is at most 2x2 when
x≤ 1

2 . In other words, we have
−x≥ ln(1− x)≥−x−2x2.
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And if x is small then the error term 2x2 will be much smaller than the main term −x. Rather than carry
around the error term 2x2 everywhere, in what follows we’ll just write ln(1− x)≈−x, secure in the knowl-
edge that we could make this approximation precise if necessary.

Now let’s plug this approximation into equation (2):

ln(Pr[A]) ≈ −1
n
− 2

n
− 3

n
− . . .− m−1

n

= −1
n

m−1

∑
i=1

i

= −m(m−1)
2n

≈ −m2

2n
. (3)

Note that we’ve used the approximation for ln(1−x) with x = 1
n ,

2
n ,

3
n , . . . ,

m−1
n . So our approximation should

be good provided all these are small, i.e., provided n is fairly big and m is quite a bit smaller than n. Once
we’re done, we’ll see that the approximation is actually pretty good even for modest sizes of n.

Now we can undo the logs in (3) to get our expression for Pr[A]:

Pr[A]≈ e−
m2
2n .

The final step is to figure out for what value of m this probability becomes 1
2 . So we want the largest m such

that e−
m2
2n ≥ 1

2 . This means we must have

−m2

2n
≥ ln(1

2) =− ln2, (4)

or equivalently

m ≤
√

(2ln2)n≈ 1.177
√

n. (5)

So the bottom line is that we can hash approximately m = b1.177
√

nc keys before the probability of a colli-
sion reaches 1

2 .

Recall that our calculation was only approximate; so we should go back and get a feel for how much error
we made. We can do this by using equation (1) to compute the exact value m = m0 at which Pr[A] drops
below 1

2 , for a few sample values of n. Then we can compare these values with our estimate m = 1.177
√

n.

n 10 20 50 100 200 365 500 1000 104 105 106

1.177
√

n 3.7 5.3 8.3 11.8 16.6 22.5 26.3 37.3 118 372 1177
exact m0 4 5 8 12 16 22 26 37 118 372 1177

From the table, we see that our approximation is very good even for small values of n. When n is large, the
error in the approximation becomes negligible.

Why 1
2 ?

Our hashing question asked when the probability of a collision rises to 1
2 . Is there anything special about 1

2 ?
Not at all. What we did was to (approximately) compute Pr[A] (the probability of no collision) as a function
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of m, and then find the largest value of m for which our estimate is smaller than 1
2 . If instead we were

interested in keeping the collision probability below (say) 0.05 (= 5%), we would just replace 1
2 by 0.95 in

equation (4). If you work through the last piece of algebra again, you’ll see that this gives us the critical
value m =

√
(2ln(20/19))n ≈ 0.32

√
n, which of course is a bit smaller than before because our collision

probability is now smaller. But no matter what “confidence” probability we specify, our critical value of m
will always be c

√
n for some constant c (which depends on the confidence).

The birthday paradox revisited

Recall from a previous lecture the birthday “paradox”: what is the probability that, in a group of m people,
no two people have the same birthday? The problem we have solved above is essentially just a generalization
of the birthday problem: the bins are the birthdays and the balls are the people, and we want the probability
that there is no collision. The above table at n = 365 tells us for what value of m this probability drops
below 1

2 : namely, 23.

Using the union bound

Here’s a cruder way to do the same calculation we did earlier. There are exactly k =
(m

2

)
= m(m−1)

2 possible
pairs among our m keys. Imagine these are numbered from 1 to

(m
2

)
(it doesn’t matter how). Let Ai denote

the event that pair i has a collision (i.e., both are hashed to the same location). Then the event A that some
collision occurs can be written A =

⋃k
i=1 Ai. What is Pr[Ai]? We claim it is just 1

n , for every i. (Why?) So,
using the union bound from the last lecture, we have

Pr[A]≤
k

∑
i=1

Pr[Ai] = k× 1
n
=

m(m−1)
2n

≈ m2

2n
.

This means that the probability of having a collision is less than 1
2 provided m2

2n ≤
1
2 , i.e., provided m≤

√
n.

This is a somewhat more restrictive condition than the one in equation (5) that we derived earlier, and it
gives answers that are less accurate than those in our earlier table. However, in terms of the dependence on n
both conditions are the same (both are of the form m = O(

√
n)).
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