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Modular Arithmetic
One way to think of modular arithmetic is that it limits numbers to a predefined range {0,1, . . . ,N−1}, and
wraps around whenever you try to leave this range — like the hand of a clock (where N = 12) or the days
of the week (where N = 7).

Example: Calculating the day of the week. Suppose that you have mapped the sequence of days of
the week (Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday) to the sequence of numbers
(0,1,2,3,4,5,6) so that Sunday is 0, Monday is 1, etc. Suppose that today is Thursday (=4), and you want
to calculate what day of the week will be 10 days from now. Intuitively, the answer is the remainder of
4+10 = 14 when divided by 7, that is, 0 —Sunday. In fact, it makes little sense to add a number like 10 in
this context, you should probably find its remainder modulo 7, namely 3, and then add this to 4, to find 7,
which is 0.

What if we want to continue this in 10 day jumps? After 5 such jumps, we would have day 4+3 ·5 = 19,
which gives 5 modulo 7 (Friday).

This example shows that in certain circumstances it makes sense to do arithmetic within the confines of
a particular number (7 in this example), that is, to do arithmetic by always finding the remainder of each
number modulo 7, say, and repeating this for the results, and so on. As well as being efficient in the sense of
keeping intermediate values as small as possible, this actually has several important applications, including
error-correcting codes and cryptography, as we shall see later.

To define things more formally, for any integer m (such as 7) we say that x and y are congruent modulo m if
they differ by a multiple of m, or in symbols,

x = y mod m ⇔ m divides (x− y).

For example, 29 = 5 mod 12 because 29−5 is a multiple of 12. We can also write 22 =−2 mod 12. Equiv-
alently, x and y are congruent modulo m iff they have the same remainder modulo m. Notice that “congruent
modulo m” is an equivalence relation: it partitions the integers into m equivalence classes 0,1,2, . . . ,m−1.

When computing modulo m, it is often convenient to reduce any intermediate results mod m to simplify the
calculation, as we did in the example above. This is justified by the following claim:

Theorem 5.1: If a = c mod m and b = d mod m, then a+b = c+d mod m and a ·b = c ·d mod m.

Proof: We know that c = a+ k ·m and d = b+ ` ·m, so c+ d = a+ k ·m+ b+ ` ·m = a+ b+(k+ `) ·m,
which means that a+b = c+d mod m. The proof for multiplication is similar and left as an exercise. 2

What this theorem tells us is that we can always reduce any arithmetic expression modulo m into a natural
number smaller than m. As an example, consider the expresion (13+ 11) · 18 mod 7. Using the above
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Theorem several times we can write:
(13+11) ·18 = (6+4) ·4 mod 7

= 10 ·4 mod 7

= 3 ·4 mod 7

= 12 mod 7

= 5 mod 7.

In summary, we can always do calculations modulo m by reducing intermediate results modulo m.

Inverses
Addition and multiplication mod m is easy. To add two numbers a and b modulo m, we just add the numbers
and then subtract m if necessary to reduce the result to a number between 0 and m− 1. Multiplication
can be similarly carried out by multiplying a and b and then calculating the remainder when the result is
divided by m. Subtraction is equally easy. This is because subtracting b modulo m is the same as adding
−b = m−b mod m.

What about division? This is a bit harder. Over the reals, dividing by a number x is the same as multiplying
by y = 1/x. Here y is that number such that x · y = 1. Of course we have to be careful when x = 0, since
such a y does not exist. Similarly, when we wish to divide by x mod m, we need to find y mod m such that
x · y = 1 mod m; then dividing by x modulo m will be the same as multiplying by y modulo m. Such a y is
called the multiplicative inverse of x modulo m. In our present setting of modular arithmetic, can we be sure
that x has an inverse mod m, and if so, is it unique (modulo m) and can we compute it?

As a first example, take x = 8 and m = 15. Then 2x = 16 = 1 mod 15, so 2 is a multiplicative inverse of 8
mod 15. As a second example, take x = 12 and m = 15. Then the sequence {ax mod m : a = 0,1,2, . . .} is
periodic, and takes on the values {0,12,9,6,3} (check this!). Thus 12 has no multiplicative inverse mod 15.

So when does x have a multiplicative inverse modulo m? The answer is: iff gcd(m,x) = 1. This condition
means that x and m share no common factors (except 1), and is often expressed by saying that x and m are
relatively prime. Moreover, when the inverse exists it is unique.

Theorem 5.2: Let m,x be positive integers such that gcd(m,x) = 1. Then x has a multiplicative inverse
modulo m, and it is unique (modulo m).

Proof: Consider the sequence of m numbers 0,x,2x, . . .(m−1)x. We claim that these are all distinct mod-
ulo m. Since there are only m distinct values modulo m, it must then be the case that ax = 1 mod m for
exactly one a (modulo m). This a is the unique multiplicative inverse.

To verify the above claim, suppose that ax = bx mod m for two distinct values a,b in the range 0 ≤ a,b ≤
m−1. Then we would have (a−b)x = 0 mod m, or equivalently, (a−b)x = km for some integer k (possibly
zero or negative). But since x and m are relatively prime, it follows that a− b must be an integer multiple
of m. This is not possible since a,b are distinct non-negative integers less than m. 2

Actually it turns out that gcd(m,x) = 1 is also a necessary condition for the existence of an inverse: i.e., if
gcd(m,x) > 1 then x has no multiplicative inverse modulo m. You might like to try to prove this using a
similar idea to that in the above proof.

Since we know that multiplicative inverses are unique when gcd(m,x) = 1, we shall write the inverse of x
as x−1 mod m. But how do we compute x−1, given x and m? For this we take a somewhat roundabout
route. First we shall consider the problem of computing the greatest common divisor gcd(a,b) of two given
integers a and b.
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Computing the Greatest Common Divisor
The greatest common divisor of two natural numbers x and y, denoted gcd(x,y), is the largest natural number
that divides them both. (Recall that 0 divides no number, and is divided by all.) How does one compute the
gcd? By Euclid’s algorithm, perhaps the first algorithm ever invented:

algorithm gcd(x,y)

if y = 0 then return(x)

else return(gcd(y,x mod y))

Note: This algorithm assumes that x≥ y≥ 0 and x > 0.

Theorem 5.3: The algorithm above correctly computes the gcd of x and y in time O(n), where n is the total
number of bits in the input (x,y).

Proof: Correctness is proved by (strong) induction on y, the smaller of the two input numbers. For each
y≥ 0, let P(y) denote the proposition that the algorithm correctly computes gcd(x,y) for all values of x such
that x≥ y (and x > 0). Certainly P(0) holds, since gcd(x,0) = x and the algorithm correctly computes this in
the if-clause. For the inductive step, we may assume that P(z) holds for all z < y (the inductive hypothesis);
our task is to prove P(y). The key observation here is that gcd(x,y) = gcd(y,x mod y) — that is, replacing x
by x mod y does not change the gcd. This is because a divisor d of y also divides x if and only if it divides
x mod y (divisibility by d is not affected by adding or subtracting multiples of d, and y is a multiple of d).
Hence the else-clause of the algorithm will return the correct value provided the recursive call gcd(y,x
mod y) correctly computes the value gcd(y,x mod y). But since x mod y < y, we know this is true by the
inductive hypothesis. This completes our verification of P(y), and hence the induction proof.

Now for the O(n) bound on the running time. It is obvious that the arguments of the recursive calls become
smaller and smaller (because y≤ x and x mod y < y). The question is, how fast? We shall show that, in the
computation of gcd(x,y), after two recursive calls the first (larger) argument is smaller than x by at least a
factor of two (assuming x > 0). There are two cases:

1. y≤ x
2 . Then the first argument in the next recursive call, y, is already smaller than x by a factor of 2,

and thus in the next recursive call it will be even smaller.

2. x≥ y > x
2 . Then in two recursive calls the first argument will be x mod y, which is smaller than x

2 .

So, in both cases the first argument decreases by a factor of at least two every two recursive calls. Thus
after at most 2n recursive calls, where n is the number of bits in x, the recursion will stop (note that the first
argument is always a natural number). 2

Note that the second part of the above proof only shows that the number of recursive calls in the computation
is O(n). We can make the same claim for the running time if we assume that each call only requires constant
time. Since each call involves one integer comparison and one mod operation, it is reasonable to claim that
its running time is constant. In a more realistic model of computation, however, we should really make the
time for these operations depend on the size of the numbers involved: thus the comparison would require
O(n) elementary (bit) operations, and the mod (which is really a division) would require O(n2) operations,
for a total of O(n2) operations in each recursive call. (Here n is the maximum number of bits in x or y, which
is just the number of bits in x.) Thus in such a model the running time of Euclid’s algorithm is really O(n3).
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Back to Multiplicative Inverses
Let’s now return to the question of computing the multiplicative inverse of x modulo m. For any pair of
numbers x,y, suppose we could not only compute gcd(x,y), but also find integers a,b such that

d = gcd(x,y) = ax+by. (1)

(Note that this is not a modular equation; and the integers a,b could be zero or negative.) For example, we
can write 1 = gcd(35,12) =−1 ·35+3 ·12, so here a =−1 and b = 3 are possible values for a,b.

If we could do this then we’d be able to compute inverses, as follows. Apply the above procedure to the
numbers m,x; this returns integers a,b such that

1 = gcd(m,x) = am+bx.

But this means that bx = 1 mod m, so b is a multiplicative inverse of x modulo m. Reducing b modulo m
gives us the unique inverse we are looking for. In the above example, we see that 3 is the multiplicative
inverse of 12 mod 35.

So, we have reduced the problem of computing inverses to that of finding integers a,b that satisfy equa-
tion (1). Now since this problem is a generalization of the basic gcd, it is perhaps not too surprising that
we can solve it with a fairly simple extension of Euclid’s algorithm. The following algorithm extended-gcd
takes as input a pair of natural numbers x≥ y as in Euclid’s algorithm, and returns a triple of integers (d,a,b)
such that d = gcd(x,y) and d = ax+by:

algorithm extended-gcd(x,y)

if y = 0 then return(x, 1, 0)

else

(d, a, b) := extended-gcd(y, x mod y)

return((d, b, a - (x div y) * b))

Note that this algorithm has the same form as the basic gcd algorithm we saw earlier; the only difference is
that we now carry around in addition the required values a,b. You should hand-turn the algorithm on the
input (x,y) = (35,12) from our earlier example, and check that it delivers correct values for a,b.

Let’s now look at why the algorithm works. In the base case (y = 0), we return the gcd value d = x as before,
together with values a = 1 and b = 0 which satisfy ax+by = d. If y > 0, we first recursively compute values
(d,a,b) such that d = gcd(y,x mod y) and

d = ay+b(x mod y). (2)

Just as in our analysis of the vanilla algorithm, we know that this d will be equal to gcd(x,y). So the first
component of the triple returned by the algorithm is correct.

What about the other two components? Let’s call them A and B. What should their values be? Well, from
the specification of the algorithm, they must be integers that satisfy

d = Ax+By. (3)

To figure out what A and B should be, we need to rearrange equation (2), as follows:

d = ay+b(x mod y)

= ay+b(x−bx/ycy)
= bx+(a−bx/ycb)y.
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(In the second line here, we have used the fact that x mod y = x−bx/ycy — check this!) Comparing this
last equation with equation (3), we see that we need to take A = b and B = a−bx/ycb. This is exactly what
the algorithm does, so we have concluded our proof of correctness.

Since the extended gcd algorithm has exactly the same recursive structure as the vanilla version, its running
time will be the same up to constant factors (reflecting the increased time per recursive call). So once again
the running time on n-bit numbers will be O(n) arithmetic operations, and O(n3) bit operations. Combining
this with our earlier discussion of inverses, we see that for any x,m with gcd(m,x) = 1 we can compute
x−1 mod m in the same time bounds.
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