
CS 70 Discrete Mathematics and Probability Theory
Fall 2012 Vazirani Note 6
This note is partly based on Section 1.4 of “Algorithms," by S. Dasgupta, C. Papadimitriou and U. Vazirani,
McGraw-Hill, 2007.
An online draft of the book is available at http://www.cs.berkeley.edu/ vazirani/algorithms.html

Public Key Cryptography
In this note, we discuss a very nice and important application of modular arithmetic: the RSA public-key
cryptosystem, named after its inventors Ronald Rivest, Adi Shamir and Leonard Adleman.

The basic setting for cryptography is typically described via a cast of three characters: Alice and Bob, who
with to communicate confidentially over some (insecure) link, and Eve, an eavesdropper who is listening in
and trying to discover what they are saying. Let’s assume that Alice wants to transmit a message x (written
in binary) to Bob. She will apply her encryption function E to x and send the encrypted message E(x) (also
called the cyphertext) over the link; Bob, upon receipt of E(x), will then apply his decryption function D to
it and thus recover the original message (also called the plaintext): i.e., D(E(x)) = x.

Since the link is insecure, Alice and Bob have to assume that Eve may get hold of E(x). (Think of Eve
as being a “sniffer" on the network.) Thus ideally we would like to know that the encryption function E is
chosen so that just knowing E(x) (without knowing the decryption function D) doesn’t allow one to discover
anything about the original message x.

For centuries cryptography was based on what are now called private-key protocols. In such a scheme,
Alice and Bob meet beforehand and together choose a secret codebook, with which they encrypt all future
correspondence between them. (This codebook plays the role of the functions E and D above.) Eve’s only
hope then is to collect some encrypted messages and use them to at least partially figure out the codebook.

Public-key schemes, such as RSA, are significantly more subtle and tricky: they allow Alice to send Bob
a message without ever having met him before! This almost sounds impossible, because in this scenario
there is a symmetry between Bob and Eve: why should Bob have any advantage over Eve in terms of being
able to understand Alice’s message? The central idea between the RSA cryptosystem is that Bob is able to
implement a digital lock, to which only he has the key. Now by making this digital lock public, he gives
Alice (or, indeed, anybody else) a way to send him a secure message which only he can open.

Here is how the digital lock is implemented in the RSA scheme. Each person has a public key known to the
whole world, and a private key known only to him- or herself. When Alice wants to send a message x to
Bob, she encodes it using Bob’s public key. Bob then decrypts it using his private key, thus retrieving x. Eve
is welcome to see as many encrypted messages for Bob as she likes, but she will not be able to decode them
(under certain simple assumptions explained below).

The RSA scheme is based heavily on modular arithmetic. Let p and q be two large primes (typically having,
say, 512 bits each), and let N = pq. We will think of the plaintext, the message x that Alice wishes to
send to Bob, as a number modulo N. (Larger messages can always be broken into smaller pieces and sent
separately.) The cyphertext, the encrypted message y = E(x), will also be a number modulo N.

Also, let e be any number that is relatively prime to (p−1)(q−1). (Typically e is a small value such as 3.)

CS 70, Fall 2012, Note 6 1

Then Bob’s public key is the pair of numbers (N,e). This pair is published to the whole world. (Note,
however, that the numbers p and q are not public; this point is crucial and we will return to it below.)

What is Bob’s private key? This will be the number d, which is the inverse of e mod (p−1)(q−1). (This
inverse is guaranteed to exist because e and (p−1)(q−1) are coprime.)

We are now in a position to describe the encryption and decryption functions:

• [Encryption]: When Alice wants to send a message x (assumed to be an integer mod N) to Bob, she
computes the value E(x) = xe mod N and sends this to Bob.

• [Decryption]: Upon receiving the value y = E(x), Bob computes D(y) = yd mod N; this will be equal
to the original message x.

Example: Let p = 5, q = 11, and N = pq = 55. (In practice, p and q would be much larger.) Then we can
choose e = 3, which is relatively prime to (p−1)(q−1) = 40. Thus Bob’s public key is (55,3). His private
key is d = 3−1 mod 40 = 27. For any message x that Alice (or anybody else) wishes to send to Bob, the
encryption of x is y = x3 mod 55, and the decryption of y is x = y27 mod 55. So, for example, if the message
is x = 13, then the encryption is y = 133 = 52 mod 55, and this is decrypted as 13 = 5227 mod 55.

To better understand the properties that the encryption function E(x) and the decryption function D(y) must
satisfy, we make a brief digression below:

Bijections
Consider a function (or mapping) f that maps elements of a set A (called the domain of f) to elements of set
B (called the range of f). For each element x∈ A (“input”), f must specify one element f (x)∈ B (“output”).
Recall that we write this as f : A→ B. We say that f is a bijection if every element a ∈ A has a unique image
b = f (a) ∈ B, and every element b ∈ B has a unique pre-image a ∈ A : f (a) = b.

f is a one-to-one function (or an injection) if f maps distinct inputs to distinct outputs. More rigorously, f
is one-to-one if the following holds: x 6= y⇒ f (x) 6= f (y).

Figure 1: One-to-one

The next property we are interested in is functions that are onto (or surjective). A function that is onto
essentially “hits" every element in the range (i.e., each element in the range has at least one pre-image).
More precisely, a function f is onto if the following holds: ∀y ∃x : f (x) = y. Here are some examples to
help visualize one-to-one and onto functions:

Note that according to our definition a function is a bijection iff it is both one-to-one and onto.

Lemma: If there is a function g : B→ A, and such that ∀x ∈ Ag(f (x)) = x, then f must be one-to-one.

CS 70, Fall 2012, Note 6 2

Figure 2: Onto

Proof: Suppose f (x) = f (x′). Then x = g(f (x)) = g(f (x′)) = x′.

Moreover, in the case that f maps a finite set to itself, if f to be one-to-one then it is necessarily onto:

Lemma: If f : A→ A is one-to-one and A is a finite set, then f is a bijection.

Proof: Let |A| = n. Since f is one-to-one, there must be n elements in the range of f . But that means that
every element in A must be hit.

Let us return to our encryption-decryption pair E(x) and D(y). Since the domain and range are finite (num-
bers mod N), and since D(E(x)) = x, it follows that both E(x) and D(y) are bijections. Moreover, they
are bijections with the special property that E(x) can be efficiently computed with knowledge of only x
and N. On the other hand, D(y) is hard to compute unless you have further knowledge of a secret key
d = e−1mod (p−1)(q−1). Let us now see why it is the case that D(E(x)) = x.

Theorem 6.1: Under the above definitions of the encryption and decryption functions E and D, we have
D(E(x)) = x mod N for every possible message x ∈ {0,1, . . . ,N−1}.
The proof of this theorem makes use of a beautiful theorem from number theory known as Fermat’s Little
Theorem, which is the following:

Theorem 6.2: [Fermat’s Little Theorem] For any prime p and any a ∈ {1,2, . . . , p−1}, we have ap−1 =
1 mod p.

Proof: Let S be the nonzero integers modulo p; that is, S = {1,2, . . . , p−1}. Here’s the crucial observation:
the effect of multiplying these numbers by a (modulo p) is simply to permute them. For instance, here’s a
picture of the case a = 3, p = 7:

Let’s carry this example a bit further. From the picture, we can conclude

{1,2, . . . ,6} = {3 ·1 mod 7, 3 ·2 mod 7, . . . , 3 ·6 mod 7}.

Multiplying all the numbers in each representation then gives 6! ≡ 36 · 6! (mod 7), and dividing by 6! we
get 36 ≡ 1 (mod 7), exactly the result we wanted in the case a = 3, p = 7.

Now let’s generalize this argument to other values of a and p, with S = {1,2, . . . , p− 1}. We’ll prove that
when the elements of S are multiplied by a modulo p, the resulting numbers are all distinct and nonzero.
And since they lie in the range [1, p−1], they must simply be a permutation of S.

The numbers a · i mod p are distinct because if a · i≡ a · j (mod p), then dividing both sides by a gives i≡ j
(mod p). They are nonzero because a · i ≡ 0 similarly implies i ≡ 0. (And we can divide by a, because by
assumption it is nonzero and therefore relatively prime to p.)

CS 70, Fall 2012, Note 6 3

6

5

4

3

2

1 1

2

3

4

5

6

Figure 3: Multiplication by (3 mod 7)

We now have two ways to write set S:

S = {1,2, . . . , p−1} = {a ·1 mod p, a ·2 mod p, . . . , a · (p−1) mod p}.

We can multiply together its elements in each of these representations to get

(p−1)!≡ ap−1 · (p−1)! (mod p).

Dividing by (p− 1)! (which we can do because it is relatively prime to p, since p is assumed prime) then
gives the theorem. 2

Let us return to proving that D(E(x)) = x:

Proof of Theorem 6.1: To prove the statement, we have to show that

(xe)d = x mod N for every x ∈ {0,1, . . . ,N−1}. (1)

Let’s consider the exponent, which is ed. By definition of d, we know that ed = 1 mod (p−1)(q−1); hence
we can write ed = 1+ k(p−1)(q−1) for some integer k, and therefore

xed− x = x1+k(p−1)(q−1)− x = x(xk(p−1)(q−1)−1). (2)

Looking back at equation (1), our goal is to show that this last expression in equation (2) is equal to 0 mod N
for every x.

Now we claim that the expression x(xk(p−1)(q−1)− 1) in (2) is divisible by p. To see this, we consider two
cases:

Case 1: x is not a multiple of p. In this case, since x 6= 0 mod p, we can use Fermat’s Little Theorem to deduce
that xp−1 = 1 mod p, and hence xk(p−1)(q−1)−1 = 0 mod p, as required.

Case 2: x is a multiple of p. In this case the expression in (2), which has x as a factor, is clearly divisible by p.

By an entirely symmetrical argument, x(xk(p−1)(q−1)−1) is also divisible by q. Therefore, it is divisible by
both p and q, and since p and q are primes it must be divisible by their product, pq = N. But this implies
that the expression is equal to 0 mod N, which is exactly what we wanted to prove. 2

So we have seen that the RSA protocol is correct, in the sense that Alice can encrypt messages in such a way
that Bob can reliably decrypt them again. But how do we know that it is secure, i.e., that Eve cannot get any

CS 70, Fall 2012, Note 6 4

useful information by observing the encrypted messages? The security of RSA hinges upon the following
simple assumption:

Given N, e and y = xe mod N, there is no efficient algorithm for determining x.

This assumption is quite plausible. How might Eve try to guess x? She could experiment with all possible
values of x, each time checking whether xe = y mod N; but she would have to try on the order of N values
of x, which is completely unrealistic if N is a number with (say) 512 bits. This is because N ≈ 2512 is
larger than estimates for the age of the Universe in femtoseconds! Alternatively, she could try to factor N to
retrieve p and q, and then figure out d by computing the inverse of e mod (p−1)(q−1); but this approach
requires Eve to be able to factor N into its prime factors, a problem which is believed to be impossible to
solve efficiently for large values of N. She could try to compute the quantity (p−1)(q−1) without factoring
N; but it is possible to show that computing (p− 1)(q− 1) is equivalent to factoring N. We should point
out that the security of RSA has not been formally proved: it rests on the assumptions that breaking RSA is
essentially tantamount to factoring N, and that factoring is hard.

We close this note with a brief discussion of implementation issues for RSA. Since we have argued that
breaking RSA is impossible because factoring would take a very long time, we should check that the com-
putations that Alice and Bob themselves have to perform are much simpler, and can be done efficiently.

There are really only two non-trivial things that Alice and Bob have to do:

1. Bob has to find prime numbers p and q, each having many (say, 512) bits.

2. Both Alice and Bob have to compute exponentials mod N. (Alice has to compute xe mod N, and Bob
has to compute yd mod N.)

Both of these tasks can be carried out efficiently. The first requires the implementation of an efficient test
for primality as well as a rich source of primes. You will learn how to tackle each of these tasks in the
algorithms course CS170. The second requires an efficient algorithm for modular exponentiation, which is
not very difficult, but will also be discussed in detail in CS170.

To summarize, then, in the RSA protocol Bob need only perform simple calculations such as multiplication,
exponentiation and primality testing to implement his digital lock. Similarly, Alice and Bob need only
perform simple calculations to lock and unlock the the message respectively—operations that any pocket
computing device could handle. By contrast, to unlock the message without the key, Eve would have
to perform operations like factoring large numbers, which (at least according to widely accepted belief)
requires more computational power than all the world’s most sophisticated computers combined! This
compelling guarantee of security without the need for private keys explains why the RSA cryptosystem is
such a revolutionary development in cryptography.

CS 70, Fall 2012, Note 6 5

