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You may consult your one handwritten note sheet. (You must turn it in with your exam.) Phones, calcu-
lators, tablets, and computers are not permitted. No collaboration is allowed at all and you are not allowed
to look at another’s work.

Please write your answers in the spaces provided in the test; in particular, we will not grade anything on the
back of an exam page unless we are clearly told on the front of the page to look there.

You have 120 minutes. There are 3 questions, of varying numbers of points. The questions are of varying
difficulty, so avoid spending too long on any one question.

Do not turn this page until your instructor tells you to do so.
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Problem 1. Stable Marriage (20 points)
a. (5 points) Assume that there are three men 1, 2, and 3 and three women A, B, and C. Their preference lists are

given below.

Man Preference List
1 A > C > B
2 A > B > C
3 C > A > B

Woman Preference List
A 3 > 1 > 2
B 2 > 3 > 1
C 1 > 2 > 3

Is the pairing {(1,C),(2,A),(3,B)} stable? Why?

Solution: No. There exists a rogue couple (1,A). Man 1 prefers A than his current partner C, and
woman A prefers man 1 than her current partner 2. Similarly (3,A) also form a rogue couple.

b. (5 points) Run the traditional propose and reject algorithm on the example above and write down the
pairing that is produced. Show your work (i.e. the intermediate steps of the algorithm).

Solution:

Day 1 2

A 1 , 2 1
B 2
C 3 3

The produced pairing from Traditional Propose & Reject Algorithm is {(1,A),(2,B),(3,C)}.
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c. (10 points) Karl and Emma are having a disagreement regarding the traditional propose-and-reject algorithm.
They both agree that it favors men over women. But they disagree about what, if anything, can be
done without changing the ritual form of men proposing, women rejecting, and people getting married
when there are no more rejections.

Karl mansplains: “It’s hopeless. Men are obviously going to propose in the order of their preferences.
It’s male optimal so why would they do anything else? As far as the women are concerned, given that
they face a specific choice of proposals at any given time, they are obviously going to select the suitor
they like the most. So unless we smash the system entirely, it is going to keep all women down.”

Emma says: “People are more perceptive and forward-looking that you think. Women talk to each
other and know each other’s preferences regarding men. They can also figure out the preferences of
the men they might be interested in. A smart and confident woman should be able to do better for
herself in the long run by not trying to cling to the best man she can get at the moment. By rejecting
more strategically, she can simultaneously help out both herself and her friends.”

Is Emma ever right? If it is impossible, prove it.

If it is possible, construct and analyze an example (a complete set of people and their preference
lists) in which a particular woman acting on her own (within the traditional ritual form of men
proposing and women rejecting) can get a better match for herself while not hurting any other
woman. Show how she can do so. The resulting pairing should also be stable.

Solution: Emma is right. Here is an example of six people, three men (1,2,3) and three women (A,B,C),
together with their respective preference lists. We’re using the same one in the parts before.

Man Preference List
1 A > C > B
2 A > B > C
3 C > A > B

Woman Preference List
A 3 > 1 > 2
B 2 > 3 > 1
C 1 > 2 > 3

We know what happens when we run the Traditional Propose & Reject Algorithm with these preference
lists. We get the pairing {(1,A),(2,B),(3,C)}. But here, we can see that both A and C can do better.

Now, woman A looks at the preference lists of all the men and women and notices something. If she doesn’t
cling to the best she can get at the moment, she can end up with someone better! Further, she can do so
without hurting B and C. Let’s see how this plays out.

On day 1 of the Traditional Algorithm, we have the following proposals. The only change here is that A now
rejects 1 instead of 2 even though she likes 1 more among them.

Day 1

A 1, 2
B
C 3
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Now, we continue from as normal, using the Traditional Propose & Reject Algorithm. Here are the remain-
ing days.

Day 1 2 3 4

A 1, 2 2 2, 3 3
B 2
C 3 1 , 3 1 1

The pairing produced from the run above is {(3,A),(2,B),(1,C)}. We see that woman A acting on her own
on day one changed the face of the game for the women.

Is this pairing stable? Well, of course it is! Each woman ends up with the man she likes the most.

In conclusion, we can say with conviction that Emma was indeed right! A forward-think woman can poten-
tially improve the ostensibly bleak outcome of the Traditional Propose & Reject Algorithm by strategically
rejecting in the early stages.
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Problem 2. [True or false] (48 points)

Circle TRUE or FALSE.

Prove all statements that you think are true and disprove (e.g. by showing a counterexample) all
statements that you think are false.

Reminder: N = {0,1,2,3, . . .} represents the set of non-negative integers.

(a) TRUE or FALSE : Suppose that P,Q are propositions, (¬(P⇒ Q)) is logically equivalent to (Q⇒ P).

Solution: Consider the truth values of both statements:

P Q P⇒ Q ¬(P⇒ Q) Q⇒ P
T T T F T
T F F T T
F T T F F
F F T F T

(b) TRUE or FALSE: Consider the Fibonacci numbers

F(n) =


0 if n = 0
1 if n = 1
F(n−1)+F(n−2) if n≥ 2

F(n) is even if and only if n is a multiple of 3.

Solution:

If we look at the Fibonacci numbers starting from index 0, we can see a repetitive pattern of “even, odd,
odd, even, odd, odd...”

So first, let’s establish this pattern with a proof.

We want to show by (strong) induction that F(n) is even if n is a multiple of 3 and is odd otherwise.

Base Cases:
k = 0. Then F(0) = 0 is even.
k = 1. Then F(1) = 1 is odd.
k = 2. Then F(2) = 1 is odd.
Thus, the statement holds for these base cases.

Inductive Hypothesis: Assume the statement is true for all 0≤ j≤ k, i.e. F( j) is even if j is a multiple
of 3 and is odd otherwise.
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Inductive Step: We want to show that F(k +1) is even if k +1 is a multiple of 3 and is odd otherwise.
Consider the following cases:

(a) Case k +1 = 3t for some t: Then F(k +1) = F(3t) = F(3t−1)+F(3t−2)
Since both F(3t−1) and F(3t−2) are odd, their sum is even. So, F(k +1) = F(3t) is even.

(b) Case k +1 = 3t +1 for some t: Then F(k +1) = F(3t +1) = F(3t)+F(3t−1)
Since F(3t) is even and F(3t−1) is odd, their sum is odd. So, F(k +1) = F(3t +1) is odd.

(c) Case k +1 = 3t +2 for some t: Then F(k +1) = F(3t +2) = F(3t +1)+F(3t)
Since F(3t) is even and F(3t +1) is odd, their sum is odd. So, F(k +1) = F(3t +2) is odd.

Thus, we have shown that the pattern we described above indeed holds. Now, we can go about proving
the statement in the question. We must prove two directions:

If n is a multiple of 3, then F(n) is even.
This is just what we showed above.

If F(n) is even, then n is a multiple of 3. Instead of proving this statement, let’s look at its contrapositive.
If n is not a multiple of 3, then F(n) is not even. Again, this is exactly what we showed above.

Thus, we have proved that F(n) is even if and only if n is a multiple of 3.
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(c) TRUE or FALSE : If a ∈ N and m ∈ N are such that 0 < a < m and gcd(a,m) = 1, then am−1 = 1

mod m.

Solution: Choose a = 3 and m = 8. We see that the two numbers satisfy the constraints as they are both
positive integers, coprime, and a < m. Using repeated squaring, one can calculate 37 mod 8 to be:

32 =9 mod 8 = 1

34 =(32)2 mod 8 = 1

37 =34+2+1 = 34 ·32 ·31 = 1 ·1 ·3 = 3 6= 1 mod 8

(d) TRUE or FALSE: If n is an integer and n3 +5 is odd then n is even.

Solution: Proof by contrapositive. Suppose n is an odd integer. We want to show that n3 + 5 is even.
Since n is odd, we can express it as n = 2k+1 for some integer k. It’s easy to see that the product of odd
integers are odd, or in this case, we can show arithmetically that n3 = (2k +1)3 = 8k3 +12k2 +6k +1,
which is odd. The sum of n3, an odd number, and 5, another odd number, is even, which is what we set
out to prove.

So by contrapositive: If n is an integer and n3 +5 is odd then n is even.
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(e) TRUE or FALSE: a ≡ b mod m =⇒ ax ≡ bx mod m (assume that a, b, m, and x are all positive

integers)

Solution: We proved this by induction on x as followed:

Base Case: x = 1. Then a≡ b mod m as given. Thus, the base case for x = 1 is true. By definition of
congruent modulo, we also know that b = a+ km for some integer k.

Inductive Hypothesis: Assume the statement is true for x = n, i.e. an ≡ bn mod m. By definition of
congruent modulo, we also know that bn = an + lm for some integer l.

Inductive Step: We want to show that for x = n + 1, an+1 ≡ bn+1 mod m. Expanding the right side,
we have:

bn+1 =bn ·b mod m

=(an + lm)(a+ km) mod m (By the Inductive Hypothesis and Base Case)

=an+1 +m(kan + la+ lmk) mod m

≡an+1 mod m

By induction, we have shown that a≡ b mod m =⇒ ax ≡ bx mod m.

(f) TRUE or FALSE : a≡ b mod m =⇒ xa≡ xb mod m (assume that a, b, m, and x are all positive integers)

Solution: Find a counterexample. One that would work in this case is, a = 1, b = 4, m = 3, and x = 2.
One can easily see that 1≡ 4 mod 3 = 1. However, 21 = 2 mod 3 = 2, whereas 24 = 16 mod 3 = 1.
Thus, the original claim is false.

EECS 70, Spring 2013, MT 1 Solution 8



PRINT your name and student ID:

Problem 3. RSA. (45 points)

Rather than doing traditional RSA based on two prime numbers, suppose that your friend suggests using
three prime numbers. She decides to use N = 105 = 3 · 5 · 7 and selects e = 5 so that the public key is
(N,e) = (105,5).

a. (4 points) Encrypt the message 2 using this public key.

Solution: To encrypt the message 2, we want to compute the value E(x)= xe mod N = 25 mod 105 =
32.

b. (6 points) Encrypt the message 3 using this public key.

Solution: Similarly, to encrypt the message 3, we want to compute the value E(x) = xe mod N = 35

mod 105 = 243 mod 105 = 33.
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c. (15 points) What property should the secret key d satisfy? Calculate what you think the secret key d should
be for this public key (N = 105,e = 5). Explain your reasoning and show your work.

It is alright if you don’t prove that this is the right property, proofs are required in the next part. No
proofs needed in part c.

d = 29

Solution: Let the three primes number be p,q,r respectively. In this problem, p = 3,q = 5,r = 7. Hence,
(p− 1)(q− 1)(r− 1) = 2 · 4 · 6 = 48. We want to calculate the number d such that d is the inverse of e
mod (p−1)(q−1)(r−1), or 5 mod 48. We can apply the Extended Euclid’s algorithm extended-gcd(48,
5):

Function Calls (x,y) x div y x mod y
#1 (48,5) 9 3
#2 (5,3) 1 2
#3 (3,2) 1 1
#4 (2,1) 2 0
#5 (1,0)

The returned values of all recursive calls are:

Function Calls (d,a,b) Returned Values
#5 (1,1,0)
#4 (1,1,0) (1,0,1)
#3 (1,0,1) (1,1,−1)
#2 (1,1,−1) (1,−1,2)
#1 (1,−1,2) (1,2,−19)

Therefore, we get −19 ·5+2 ·48 = 1. A valid, positive value of d would be −19+48 = 29.
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d. (20 points) Prove that the encryption function E(x) = xe mod N and the decryption function D(y) = yd mod
N above are inverses. (i.e. ∀x,(0≤ x < N)⇒ (D(E(x)) = x).)

(HINT: Follow the RSA proof from class and just adapt it for when there are three primes involved.)

Solution: As seen in lecture, we need to show that (xe)d = x mod N. We first consider the exponent ed. By
definition of d, we know that ed = 1 mod (p−1)(q−1)(r−1); hence we can write ed = 1+k(p−1)(q−
1)(r−1) for some integer k, and therefore xed− x = x1+k(p−1)(q−1)(r−1)− x = x(xk(p−1)(q−1)(r−1)−1)

Our goal is to show that this last expression is equal to 0 mod N for every x. To do so, we claim that it is
divisible by p, of which there are two cases:

Case 1: x is not a multiple of p. In this case, x 6= 0 mod p, we can use Fermat’s Little Theorem to deduce
that xp−1 = 1 mod p, and hence xk(p−1)(q−1)(r−1)−1 = 0 mod p, as required.

Case 2: x is a multiple of p. In that case, the expression x(xk(p−1)(q−1)(r−1)−1) clearly has a factor of x, so
it is divisible by p.

By an entirely symmetrical argument, x(xk(p−1)(q−1)(r−1)− 1) is also divisible by q and r. Therefore, it is
divisible by all three numbers, all of which are prime; thus, it must be divisible by their product, pqr = N.
But this implies that the expression is equal to 0 mod N, which is exactly what we want to prove.
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