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I.I.D. Random Variables
Estimating the bias of a coin
Question: We want to estimate the proportion p of Democrats in the US population, by taking a small
random sample. How large does our sample have to be to guarantee that our estimate will be within (say)
an additive factor of 0.1 of the true value with probability at least 0.95?

This is perhaps the most basic statistical estimation problem, and shows up everywhere. We will develop
a simple solution that uses only Chebyshev’s inequality. More refined methods can be used to get sharper
results.

Let’s denote the size of our sample by n (to be determined), and the number of Democrats in it by the
random variable Sn. (The subscript n just reminds us that the r.v. depends on the size of the sample.) Then
our estimate will be the value An =

1
n Sn.

Now as has often been the case, we will find it helpful to write Sn = X1 +X2 + · · ·+Xn, where

Xi =

{
1 if person i in sample is a Democrat;
0 otherwise.

Note that each Xi can be viewed as a coin toss, with Heads probability p (though of course we do not
know the value of p!). And the coin tosses are independent.1 We call such a family of random variables
independent, identically distributed, or i.i.d. for short. (For a precise definition of independent random
variables, see the next lecture note; for now we work with the intuitive meaning that knowing the value of
any subset of the r.v.’s does not change the distribution of the others.)

What is the expectation of our estimate?

E(An) = E(1
n Sn) =

1
n E(X1 +X2 + · · ·+Xn) =

1
n × (np) = p.

So for any value of n, our estimate will always have the correct expectation p. [Such a r.v. is often called an
unbiased estimator of p.] Now presumably, as we increase our sample size n, our estimate should get more
and more accurate. This will show up in the fact that the variance decreases with n: i.e., as n increases, the
probability that we are far from the mean p will get smaller.

To see this, we need to compute Var(An). But An =
1
n ∑n

i=1 Xi, which is just a multiple of a sum of independent
random variables.

Theorem 17.1: For any random variable X and constant c, we have

Var(cX) = c2Var(X).

1We are assuming here that the sampling is done “with replacement”; i.e., we select each person in the sample from the entire
population, including those we have already picked. So there is a small chance that we will pick the same person twice.
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And for independent random variables X ,Y , we have

Var(X +Y ) = Var(X)+Var(Y ).

Before we prove this theorem, let us formalize something we have been assuming implicitly for some time:

Joint Distributions Consider two random variables X and Y defined on the same probability space. By
linearity of expectation, we know that E(X+Y )=E(X)+E(Y ). Since E(X) can be calculated if we know the
distribution of X and E(Y ) can be calculated if we know the distribution of Y , this means that E(X +Y ) can
be computed knowing only the two individual distributions. No information is needed about the relationship
between X and Y . This is not true if we need to compute, say, E((X +Y )2), e.g. as when we computed the
variance of a binomial r.v. This is because E((X +Y )2) = E(X2)+2E(XY )+E(Y 2), and E(XY ) depends on
the relationship between X and Y . How can we capture such a relationship?

Recall that the distribution of a single random variable X is the collection of the probabilities of all events
X = a, for all possible values of a that X can take on. When we have two random variables X and Y ,
we can think of (X ,Y ) as a "two-dimensional" random variable, in which case the events of interest are
X = a∧Y = b for all possible values of (a,b) that (X ,Y ) can take on. Thus, a natural generalization of the
notion of distribution to multiple random variables is the following.

Definition 17.1 (joint distribution): The joint distribution of two discrete random variables X and Y is the
collection of values {(a,b,Pr[X = a∧Y = b]) : (a,b)∈A ×B}, where A and B are the sets of all possible
values taken by X and Y respectively.

This notion obviously generalizes to three or more random variables. Since we will write Pr[X = a∧Y = b]
quite often, we will abbreviate it to Pr[X = a,Y = b].

Just like the distribution of a single random variable, the joint distribution is normalized, i.e.

∑
a∈A ,b∈B

Pr[X = a,Y = b] = 1.

This follows from noticing that the events X = a∧Y = b, a ∈ A ,b ∈ B, partition the sample space.

Independent Random Variables Independence for random variables is defined in analogous fashion to
independence for events:

Definition 17.2 (independent r.v.’s): Random variables X and Y on the same probability space are said
to be independent if the events X = a and Y = b are independent for all values a,b. Equivalently, the joint
distribution of independent r.v.’s decomposes as

Pr[X = a,Y = b] = Pr[X = a]Pr[Y = b] ∀a,b.

Note that for independent r.v.’s, the joint distribution is fully specified by the marginal distributions.

Mutual independence of more than two r.v.’s is defined similarly. A very important example of independent
r.v.’s is indicator r.v.’s for independent events. Thus, for example, if {Xi} are indicator r.v.’s for the ith toss
of a coin being Heads, then the Xi are mutually independent r.v.’s.

We saw that the expectation of a sum of r.v.’s is the sum of the expectations of the individual r.v.’s. This is
not true in general for variance. However, as the above theorem states, this is true if the random variables
are independent. To see this, first we look at the expectation of a product of independent r.v.’s (which is a
quantity that frequently shows up in variance calculations, as we have seen).

Theorem 17.2: For independent random variables X ,Y , we have E(XY ) = E(X)E(Y ).
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Proof: We have

E(XY ) = ∑
a

∑
b

ab×Pr[X = a,Y = b]

= ∑
a

∑
b

ab×Pr[X = a]×Pr[Y = b]

=

(
∑
a

a×Pr[X = a]
)
×

(
∑
b

b×Pr[Y = b]

)
= E(X)×E(Y ),

as required. In the second line here we made crucial use of independence. 2

For example, this theorem would have allowed us to conclude immediately in our random walk example at
the beginning of Lecture Note 16 that E(XiX j) = E(Xi)E(X j) = 0, without the need for a calculation.

We now use the above theorem to conclude the nice property of the variance of independent random variables
stated in the theorem above, namely that for independent random variables X and Y , Var(X +Y ) = Var(X)+
Var(Y ):

Proof: From the alternative formula for variance in Theorem 16.1, we have, using linearity of expectation
extensively,

Var(X +Y ) = E((X +Y )2)−E(X +Y )2

= E(X2)+E(Y 2)+2E(XY )− (E(X)+E(Y ))2

= (E(X2)−E(X)2)+(E(Y 2)−E(Y )2)+2(E(XY )−E(X)E(Y ))

= Var(X)+Var(Y )+2(E(XY )−E(X)E(Y )).

Now because X ,Y are independent, by Theorem 18.1 the final term in this expression is zero. Hence we get
our result. 2

Note: The expression E(XY )−E(X)E(Y ) appearing in the above proof is called the covariance of X and Y ,
and is a measure of the dependence between X ,Y . It is zero when X ,Y are independent.

It is very important to remember that neither of these two results is true in general, without the assumption
that X ,Y are independent. As a simple example, note that even for a 0-1 r.v. X with Pr[X = 1] = p, E(X2) = p
is not equal to E(X)2 = p2 (because of course X and X are not independent!).

Note also that the theorem does not quite say that variance is linear for independent random variables: it
says only that variances sum. It is not true that Var(cX) = cVar(X) for a constant c. It says that Var(cX) =
c2Var(X).

The proof is left as a straightforward exercise.

We now return to our example of estimating the proportion of Democrats, where we were about to compute
Var(An):

Var(An) = Var(1
n

n

∑
i=1

Xi) = (1
n)

2Var(
n

∑
i=1

Xi) = (1
n)

2
n

∑
i=1

Var(Xi) =
σ 2

n
,

where we have written σ 2 for the variance of each of the Xi. So we see that the variance of An decreases
linearly with n. This fact ensures that, as we take larger and larger sample sizes n, the probability that we
deviate much from the expectation p gets smaller and smaller.

Let’s now use Chebyshev’s inequality to figure out how large n has to be to ensure a specified accuracy
in our estimate of the proportion of Democrats p. A natural way to measure this is for us to specify two
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parameters, ε and δ , both in the range (0,1). The parameter ε controls the error we are prepared to tolerate
in our estimate, and δ controls the confidence we want to have in our estimate. A more precise version of
our original question is then the following:

Question: For the Democrat-estimation problem above, how large does the sample size n have to be in order
to ensure that

Pr[|An − p| ≥ ε]≤ δ ?

In our original question, we had ε = 0.1 and δ = 0.05.

Let’s apply Chebyshev’s inequality to answer our more precise question above. Since we know Var(An),
this will be quite simple. From Chebyshev’s inequality, we have

Pr[|An − p| ≥ ε]≤ Var(An)

ε2 =
σ 2

nε2

To make this less than the desired value δ , we need to set

n ≥ σ 2

ε2δ
. (1)

Now recall that σ 2 = Var(Xi) is the variance of a single sample Xi. So, since Xi is a 0/1-valued r.v., we have
σ 2 = p(1− p), and inequality (1) becomes

n ≥ p(1− p)
ε2δ

. (2)

Since p(1− p) is takes on its maximum value for p = 1/2, we can conclude that it is sufficient to choose n
such that:

n ≥ 1
4ε2δ

. (3)

Plugging in ε = 0.1 and δ = 0.05, we see that a sample size of n = 500 is sufficient. Notice that the size
of the sample is independent of the total size of the population! This is how polls can accurately estimate
quantities of interest for a population of several hundred million while sampling only a very small number
of people.

Estimating a general expectation
What if we wanted to estimate something a little more complex than the proportion of Democrats in the
population, such as the average wealth of people in the US? Then we could use exactly the same scheme
as above, except that now the r.v. Xi is the wealth of the ith person in our sample. Clearly E(Xi) = µ , the
average wealth (which is what we are trying to estimate). And our estimate will again be An =

1
n ∑n

i=1 Xi, for
a suitably chosen sample size n. Once again the Xi are i.i.d. random variables, so we again have E(An) = µ
and Var(An) =

σ2

n , where σ2 = Var(Xi) is the variance of the Xi. (Recall that the only facts we used about
the Xi was that they were independent and had the same distribution — actually the same expectation and
variance would be enough: why?) This time, however, since we do not have any a priori bound on the mean
µ , it makes more sense to let ε be the relative error. i.e. we wish to find an estimate that is within an additive
error of εµ .

Using equation (1), but substituting εµ in place of ε , it is enough for the sample size n to satisfy

n ≥ σ2

µ2 × 1
ε2δ

. (4)
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Here ε and δ are the desired relative error and confidence respectively. Now of course we don’t know the
other two quantities, µ and σ2, appearing in equation (4). In practice, we would use a lower bound on µ
and an upper bound on σ2 (just as we used a lower bound on p in the Democrats problem). Plugging these
bounds into equation (4) will ensure that our sample size is large enough.

For example, in the average wealth problem we could probably safely take µ to be at least (say) $20k
(probably more). However, the existence of people such as Bill Gates means that we would need to take a
very high value for the variance σ 2. Indeed, if there is at least one individual with wealth $50 billion, then
assuming a relatively small value of µ means that the variance must be at least about (50×109)2

250×106 = 1013. (Check
this.) There is really no way around this problem with simple uniform sampling: the uneven distribution of
wealth means that the variance is inherently very large, and we will need a huge number of samples before
we are likely to find anybody who is immensely wealthy. But if we don’t include such people in our sample,
then our estimate will be way too low.

As a further example, suppose we are trying to estimate the average rate of emission from a radioactive
source, and we are willing to assume that the emissions follow a Poisson distribution with some unknown
parameter λ — of course, this λ is precisely the expectation we are trying to estimate. Now in this case we
have µ = λ and also σ 2 = λ (see the previous lecture note). So σ2

µ2 = 1
λ . Thus in this case a sample size of

n = 1
λε2δ suffices. (Again, in practice we would use a lower bound on λ .)

The Law of Large Numbers
The estimation method we used in the previous two sections is based on a principle that we accept as part
of everyday life: namely, the Law of Large Numbers (LLN). This asserts that, if we observe some random
variable many times, and take the average of the observations, then this average will converge to a single
value, which is of course the expectation of the random variable. In other words, averaging tends to smooth
out any large fluctuations, and the more averaging we do the better the smoothing.

Theorem 17.3: [Law of Large Numbers] Let X1,X2, . . . ,Xn be i.i.d. random variables with common ex-
pectation µ = E(Xi). Define An =

1
n ∑n

i=1 Xi. Then for any α > 0, we have

Pr [|An −µ| ≥ α]→ 0 as n → ∞.

Proof: Let Var(Xi) = σ2 be the common variance of the r.v.’s; we assume that σ 2 is finite2. With this
(relatively mild) assumption, the LLN is an immediate consequence of Chebyshev’s Inequality. For, as we
have seen above, E(An) = µ and Var(An) =

σ2

n , so by Chebyshev we have

Pr [|An −µ| ≥ α]≤ Var(An)

α2 =
σ 2

nα2 → 0 as n → ∞.

This completes the proof. 2

Notice that the LLN says that the probability of any deviation α from the mean, however small, tends to
zero as the number of observations n in our average tends to infinity. Thus by taking n large enough, we can
make the probability of any given deviation as small as we like.

2If σ2 is not finite, the LLN still holds but the proof is much trickier.
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