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Inference
One of the major uses of probability is to provide a systematic framework to perform inference under
uncertainty. A few specific applications are:

• communications: Information bits are sent over a noisy physical channel (wireless, DSL phone line,
etc.). From the received symbols, one wants to make a decision about what bits are transmitted.

• control: A spacecraft needs to be landed on the moon. From noisy measurements by motion sen-
sors, one wants to estimate the current position of the spacecraft relative to the moon surface so that
appropriate controls can be applied.

• object recognition: From an image containing an object, one wants to recognize what type of object
it is.

• speech recognition: From hearing noisy utterances, one wants to recognize what is being said.

• investing: By observing past performance of a stock, one wants to estimate its intrinsic quality and
hence make a decision on whether and how much to invest in it.

All of the above problems can be modeled with the following ingredients:

• A random variable X representing the hidden quantity not directly observed but in which one is inter-
ested. X can be the value of an information bit in a communication scenario, position of the spacecraft
in the control application, or the object class in the recognition problem.

• Random variables Y1,Y2, . . .Yn representing the observations. They may be the outputs of a noisy
channel at different times, pixel values of an image, values of the stocks on successive days, etc.

• The distribution of X , called the prior distribution. This can be interpreted as the knowledge about X
before seeing the observations.

• The conditional distribution of Y1, . . .Yn given X . This models the noise or randomness in the obser-
vations.

Since the observations are noisy, there is in general no hope of knowing what the exact value of X is given
the observations. Instead, all knowledge about X can be summarized by the conditional distribution of X
given the observations. We don’t know what the exact value of X is, but the conditional distribution tells us
which values of X are more likely and which are less likely. Based on this information, intelligent decisions
can be made.
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Inference Example 1: Multi-armed Bandits
Question: You walk into a casino. There are several slot machines (bandits). You know some have odds
very favorable to you, some have less favorable odds, and some have very poor odds. However, you don’t
know which are which. You start playing on some of them, and by observing the outcomes, you want to
learn which is which so that you can intelligently figure out which machine to play on (or not play at all,
which may be the most intelligent decision.)

Stripped-down version: Suppose there are n biased coins. Coin i has probability pi of coming up Heads;
however, you don’t know which is which. You randomly pick one coin and flip it. If the coin comes up
Heads you win $1, and if it comes up Tails you lose $1. What is the probability of winning? What is the
probability of winning on the next flip given you have observed a Heads with this coin? Given you have
observed two Heads in a row, would you bet on the next flip?

Modeling using Random Variables

Let X be the coin randomly chosen, and Yj be the indicator r.v. for the event that the jth flip of this randomly
chosen coin comes up Heads. Since we don’t know which coin we have chosen, X is the hidden quantity.
The Yj’s are the observations.

Predicting the first flip

The first question asks for Pr[Y1 = 1]. First we calculate the joint distribution of X and Y1:

Pr[X = i,Y1 = H] = Pr[X = i]Pr[Y1 = H|X = i] =
pi

n
. (1)

[Note: We are abusing notation here by writing “Y1 = H" rather than “Y1 = 1" for the event that the first
coin toss comes up Heads. We are doing this to make things clearer, even though strictly speaking a random
variable should take on only real values.]

Applying (??), we get:

Pr[Y1 = H] =
n

∑
i=1

Pr[X = i,Y1 = H] =
1
n

n

∑
i=1

pi. (2)

Note that combining the above two equations, we are in effect using the fact that:

Pr[Y1 = H] =
n

∑
i=1

Pr[X = i]Pr[Y1 = H|X = i]. (3)

This is just the Total Probability Rule for events applied to random variables. Once you get familiar with
this type of calculation, you can bypass the intermediate calculation of the joint distribution and directly
write down equation (3).

Predicting the second flip after observing the first

Now, given that we observed Y1 = H, we have learned something about the randomly chosen coin X . This
knowledge is captured by the conditional distribution

Pr[X = i|Y1 = H] =
Pr[X = i,Y1 = H]

Pr[Y1 = H]
=

pi

∑
n
j=1 p j

,
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using eqns. (1) and (2).

Note that when we substitute eqn. (1) into the above equation, we are in effect using:

Pr[X = i|Y1 = H] =
Pr[X = i]Pr[Y1 = H|X = i]

Pr[Y1 = H]
.

This is just Bayes’ rule for events applied to random variables. Just as for events, this rule has the interpre-
tation of updating knowledge based on the observation: {(i,Pr[X = i]) : i = 1, . . . ,n} is the prior distribution
of the hidden X ; {(i,Pr[X = i|Y1 = H]) : i = 1, . . . ,n} is the posterior distribution of X given the observation.
Bayes’ rule updates the prior distribution to yield the posterior distribution

Now we can calculate the probability of winning using this same coin in the second flip:

Pr[Y2 = H|Y1 = H] =
n

∑
i=1

Pr[X = i|Y1 = H]Pr[Y2 = H|X = i,Y1 = H]. (4)

This can be interpreted as the total probability rule (3) but in a new probability space with all the probabilities
under the additional condition Y1 = H. You should try to verify this formula from first principles.

Now let us calculate the various probabilities on the right hand side of (4). The probability Pr[X = i|Y1 =
H] is just the posterior distribution of X given the observation, which we have already calculated above.
What about the probability Pr[Y2 = H|X = i,Y1 = H]? There are two conditioning events: X = i and Y1 =
H. But here is the thing: once we know that the unknown coin is coin i, then knowing the first flip is a
Head is redundant and provides no further statistical information about the outcome of the second flip: the
probability of getting a Heads on the second flip is just pi. In other words,

Pr[Y2 = H|X = i,Y1 = H] = Pr[Y2 = H|X = i] = pi. (5)

The events Y1 = H and Y2 = H are said to be independent conditional on the event X = i. Since in fact Y1 = a
and Y2 = b are independent given X = i for all a,b, i, we will say that the random variables Y1 and Y2 are
independent given the random variable X .

Definition 18.1 (Conditional Independence): Two events A and B are said to be conditionally independent
given a third event C if

Pr[A∧B|C] = Pr[A|C]×Pr[B|C].

Two random variables X and Y are said to be conditionally independent given a third random variable Z if
for every a,b,c,

Pr[X = a,Y = b|Z = c] = Pr[X = a|Z = c]×Pr[Y = b|Z = c].

Going back to our coin example, note that the r.v.’s Y1 and Y2 are definitely not independent. Knowing the
outcome of Y1 tells us some information about the identity of the coin (X) and hence allows us to infer
something about Y2. However, if we already know X , then the outcomes of the different flips Y1 and Y2 are
independent.

Now substituting (5) into (4), we get the probability of winning using this coin in the second flip:

Pr[Y2 = H|Y1 = H] =
n

∑
i=1

Pr[X = i|Y1 = H]Pr[Y2 = H|X = i] =
∑

n
i=1 p2

i

∑
n
i=1 pi

.

It can be shown (using the Cauchy-Schwarz inequality) that n∑i p2
i ≥ (∑i pi)

2, which implies that

Pr[Y2 = H|Y1 = H] =
∑

n
i=1 p2

i

∑
n
i=1 pi

≥ ∑
n
i=1 pi

n
= Pr[Y1 = H].

EECS 70, Spring 2013, Lecture 18 3



Figure 1: The conditional distributions of X given no observations, 1 Heads, and 2 Heads.

Thus our observation of a Heads on the first flip increases the probability that the second toss is Heads. This,
of course, is intuitively reasonable, because the posterior distribution puts larger weight on the coins with
larger values of pi.

Predicting the third flip after observing the first two

Using Bayes’ rule and the total probability rule, we can compute the posterior distribution of X given that
we observed two Heads in a row:

Pr[X = i|Y1 = H,Y2 = H] =
Pr[X = i]Pr[Y1 = H,Y2 = H|X = i]

Pr[Y1 = H,Y2 = H]

=
Pr[X = i]Pr[Y1 = H,Y2 = H|X = i]

∑
n
j=1 Pr[X = j]Pr[Y1 = H,Y2 = H|X = j]

=
Pr[X = i]Pr[Y1 = H|X = i]Pr[Y2 = H|X = i]

∑
n
j=1 Pr[X = j]Pr[Y1 = H|X = j]Pr[Y2 = H|X = j]

=
p2

i

∑
n
j=1 p2

j

The probability of getting a win on the third flip using the same coin is then:

Pr[Y3 = H|Y1 = H,Y2 = H] =
n

∑
i=1

Pr[X = i|Y1 = H,Y2 = H]Pr[Y3 = H|X = i,Y1 = H,Y2 = H]

=
n

∑
i=1

Pr[X = i|Y1 = H,Y2 = H]Pr[Y3 = H|X = i]

=
∑

n
i=1 p3

i

∑
n
i=1 p2

i
.

Again, it can be shown that ∑
n
i=1 p3

i
∑

n
i=1 p2

i
≥ ∑

n
i=1 p2

i
∑

n
i=1 pi

, so the probability of seeing another Heads on the next flip has
again increased. If we continue this process further (conditioning on having seen more and more Heads),
the probability of Heads on the next flip will keep increasing towards the limit pmax = maxi pi.

As a numerical illustration, suppose n = 3 and the three coins have Heads probabilities p1 = 2/3, p2 =
1/2, p3 = 1/5. The conditional distributions of X after observing no flip, one Heads and two Heads in a row
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Figure 2: The system diagram for the communication problem.

are shown in Figure 1. Note that as more Heads are observed, the conditional distribution is increasingly
concentrated on coin 1 with p1 = 2/3: we are increasingly certain that the coin chosen is the best coin. The
corresponding probabilities of winning on the next flip after observing no flip, one Heads and two Heads
in a row are 0.46,0.54 and 0.58 respectively. The conditional probability of winning gets better and better
(approaching 2/3 in the limit).

Inference Example 2: Communication over a Noisy Channel
Question: I have one bit of information that I want to communicate over a noisy channel. The noisy channel
flips each one of my transmitted symbols independently with probability p < 0.5. How much improvement
in performance do I get by repeating my transmission n times?

Comment: In an earlier lecture note, we also considered a communication problem and gave some examples
of error-correcting codes. However, the models for the communication channel are different. There, we put
a bound on the maximum number of flips the channel can make. Here, we do not put such bounds a priori
but instead impose a bound on the probability that each bit is flipped (so that the expected number of bits
flipped is np). Since there is no bound on the maximum number of flips the channel can make, there is no
guarantee that the receiver will always decode correctly. Instead, one has to be satisfied with being able to
decode correctly with high probability, e.g., probability of error < 0.01.

Modeling

The situation is shown in Figure 2.

Let X (= 0 or 1) be the value of the information bit I want to transmit. Assume that X is equally likely to be
0 or 1 (this is the prior). The received symbol on the ith repetition of X is

Yi = X +Zi mod 2, i = 1,2, . . . ,n

with Zi = 1 with probability p and Zi = 0 with probability 1− p. Note that Yi is different from X if and only
if Zi = 1. Thus, the transmitted symbol is flipped with probability p. The Zi’s are assumed to be mutually
independent across different repetitions of X and also independent of X . The Zi’s can be interpreted as noise.

Note that the received symbols Yi’s are not independent; they all contain information about the transmitted
bit X . However, given X , they are (conditionally) independent since they then only depend on the noise Zi.
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Decision rule

First, we have to figure out what decision rule to use at the receiver, i.e., given each of the 2n possible
received sequences, Y1 = b1,Y2 = b2, . . .Yn = bn, how should the receiver guess what value of X was trans-
mitted?

A natural rule is the maximum a posteriori (MAP) rule: guess the value a∗ for which the conditional proba-
bility of X = a∗ given the observations is the largest among all a. More explicitly:

a∗ =
{

0 if Pr[X = 0|Y1 = b1, . . . ,Yn = bn]≥ Pr[X = 1|Y1 = b1, . . .Yn = bn]
1 otherwise

Now, let’s reformulate this rule so that it looks cleaner. By Bayes’ rule, we have

Pr[X = 0|Y1 = b1, . . .Yn = bn] =
Pr[X = 0]Pr[Y1 = b1, . . . ,Yn = bn|X = 0]

Pr[Y1 = b1, . . . ,Yn = bn]
(6)

=
Pr[X = 0]Pr[Y1 = b1|X = 0]Pr[Y2 = b2|X = 0] . . .Pr[Yn = bn|X = 0]

Pr[Y1 = b1, . . . ,Yn = bn]
(7)

In the second step, we are using the fact that the observations Yi’s are conditionally independent given X .
(Why?) Similarly,

Pr[X = 1|Y1 = b1, . . .Yn = bn] =
Pr[X = 1]Pr[Y1 = b1, . . . ,Yn = bn|X = 1]

Pr[Y1 = b1, . . . ,Yn = bn]
(8)

=
Pr[X = 1]Pr[Y1 = b1|X = 1]Pr[Y2 = b2|X = 1] . . .Pr[Yn = bn|X = 1]

Pr[Y1 = b1, . . . ,Yn = bn]
.(9)

An equivalent way of describing the MAP rule is that it computes the ratio of these conditional probabilities
and checks if it is greater than or less than 1. If it is greater than (or equal to) 1, then guess that a 0 was
transmitted; otherwise guess that a 1 was transmitted. (This ratio indicates how likely a 0 is compared to a
1, and is called the likelihood ratio.) Dividing (7) and (9), and recalling that we are assuming Pr[X = 1] =
Pr[X = 0], the likelihood ratio L is:

L =
n

∏
i=1

Pr[Yi = bi|X = 0]
Pr[Yi = bi|X = 1]

. (10)

Note that we didn’t have to compute Pr[Y1 = b1, . . . ,Yn = bn], since it appears in both of the conditional
probabilities and got canceled out when computing the ratio.

Now,
Pr[Yi = bi|X = 0]
Pr[Yi = bi|X = 1]

=

{
p

1−p if bi = 1
1−p

p if bi = 0

In other words, L has a factor of p/(1− p)< 1 for every 1 received and a factor of (1− p)/p > 1 for every 0
received. So the likelihood ratio L is greater than 1 if and only if the number of 0’s is greater than the number
of 1’s. Thus, the decision rule is simply a majority rule: guess that a 0 was transmitted if the number of 0’s
in the received sequence is at least as large as the number of 1’s, otherwise guess that a 1 was transmitted.

Note that in deriving this rule, we assumed that Pr[X = 0] = Pr[X = 1] = 0.5. When the prior distribution is
not uniform, the MAP rule is no longer a simple majority rule. Exercise: derive the MAP rule in the general
case.
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Error probability analysis

What is the probability that the guess is incorrect? This is just the event E that the number of flips by the
noisy channel is greater than n/2. So the error probability of our majority rule is:

Pr[E] = Pr
[ n

∑
i=1

Zi >
n
2

]
=

n

∑
k=dn/2e

(
n
k

)
pk(1− p)n−k,

recognizing that the random variable S := ∑
n
i=1 Zi has a binomial distribution with parameters n and p.

This gives an expression for the error probability that can be numerically evaluated for given values of
n. Given a target error probability of, say, 0.01, one can then compute the smallest number of repetitions
needed to achieve the target error probability.1

As in the hashing application we looked at earlier in the course, we are interested in a more explicit rela-
tionship between n and the error probability to get a better intuition of the problem. The above expression
is too cumbersome for this purpose. Instead, notice that n/2 is greater than the mean np of S and hence the
error event is related to the tail of the distribution of S. One can therefore apply Chebyshev’s inequality to
bound the error probability:

Pr
[
S >

n
2

]
< Pr

[
|S−np|> n(

1
2
− p)

]
≤ Var(S)

n2(1
2 − p)2

=
p(1− p)
(1

2 − p)2
· 1

n
,

using the fact that Var(S) = nVar(Zi) = np(1− p). The important thing to note is that the error probability
decreases with n, so indeed by repeating more times the performance improves (as one would expect!). For
a given target error probability of, say, 0.01, one needs to repeat no more than

n = 100 · p(1− p)
(1

2 − p)2

times. For p = 0.25, this evaluates to 300.

Exercise: compare the bound with the actual error probability. You will see that the bound is rather pes-
simistic, and actually one can repeat many fewer times to get an error probability of 0.01. In an upper-
division course such as CS 174 or EECS 126, you can learn about much better bounds on error probabilities
like this.

1Needless to say, one does not want to repeat more times than is necessary as we are using more time to transmit each information
bit and the rate of communication is slowed down.
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