
CS 70 Discrete Mathematics and Probability Theory
Fall 2012 Vazirani Note 8

Error Correcting Codes
Erasure Errors
We will consider two situations in which we wish to transmit information on an unreliable channel. The
first is exemplified by the internet, where the information (say a file) is broken up into packets, and the
unreliability is manifest in the fact that some of the packets are lost during transmission, as shown below:

Suppose that the message consists of n packets and suppose that at most k packets are lost during transmis-
sion. We will show how to encode the initial message consisting of n packets into a redundant encoding
consisting of n+ k packets such that the recipient can reconstruct the message from any n received packets.
Note that in this setting the packets are labeled and thus the recipient knows exactly which packets were
dropped during transmission.

We can assume without loss of generality that the contents of each packet is a number modulo q, where q is
a prime. For example, the contents of the packet might be a 32-bit string and can therefore be regarded as a
number between 0 and 232− 1; then we could choose q to be any prime larger than 232. The properties of
polynomials over GF(q) (i.e., with coefficients and values reduced modulo q) are perfectly suited to solve
this problem and are the backbone of this error-correcting scheme. To see this, let us denote the message to
be sent by m1, . . . ,mn and make the following crucial observations:

1) There is a unique polynomial P(x) of degree n−1 such that P(i) = mi for 1 ≤ i ≤ n (i.e., P(x) contains
all of the information about the message, and evaluating P(i) gives the contents of the i-th packet).

2) The message to be sent is now m1 = P(1), . . . ,mn = P(n). We can generate additional packets by eval-
uating P(x) at points n+ j (remember, our transmitted message must be redundant, i.e., it must contain
more packets than the original message to account for the lost packets). Thus the transmitted message is
c1 =P(1),c2 =P(2), . . . ,cn+k =P(n+k). Since we are working modulo q, we must make sure that n+k≤ q,
but this condition does not impose a serious constraint since q is very large.

3) We can uniquely reconstruct P(x) from its values at any n distinct points, since it has degree n−1. This
means that P(x) can be reconstructed from any n of the transmitted packets. Evaluating this reconstructed
polynomial P(x) at x = 1, . . . ,n yields the original message m1, . . . ,mn.

Example

Suppose Alice wants to send Bob a message of n = 4 packets and she wants to guard against k = 2 lost
packets. Then, assuming the packets can be coded up as integers between 0 and 6, Alice can work over
GF(7) (since 7≥ n+k = 6). Suppose the message that Alice wants to send to Bob is m1 = 3, m2 = 1, m3 = 5,
and m4 = 0. The unique polynomial of degree n−1 = 3 described by these 4 points is P(x) = x3 +4x2 +5
(verify that P(i) = mi for 1≤ i≤ 4).

CS 70, Fall 2012, Note 8 1

Since k = 2, Alice must evaluate P(x) at 2 extra points: P(5) = 6 and P(6) = 1. Now, Alice can transmit
the encoded message which consists of n+k = 6 packets, where c j = P(j) for 1≤ j≤ 6. So c1 = P(1) = 3,
c2 = P(2) = 1, c3 = P(3) = 5, c4 = P(4) = 0, c5 = P(5) = 6, and c6 = P(6) = 1. Suppose packets 2 and 6
are dropped, in which case we have the following situation:

From the values that Bob received (3, 5, 0, and 6), he uses Lagrange interpolation and computes the follow-
ing delta functions:

∆1(x) =
(x−3)(x−4)(x−5)

−24

∆3(x) =
(x−1)(x−4)(x−5)

4

∆4(x) =
(x−1)(x−3)(x−5)

−3

∆5(x) =
(x−1)(x−3)(x−4)

8
.

He then reconstructs the polynomial P(x) = (3)∆1(x)+(5)∆3(x)+(0)∆4(x)+(6)∆5(x) = x3+4x2+5. Bob
then evaluates m2 = P(2) = 1, which is the packet that was lost from the original message. More generally,
no matter which two packets were dropped, following the same method Bob could still have reconstructed
P(x) and thus the original message.

Let us consider what would happen if Alice sent one fewer packet. If Alice only sent c j for 1 ≤ j ≤
n+ k−1, then with k erasures, Bob would only receive c j for n−1 distinct values j. Thus, Bob would not
be able to reconstruct P(x) (since there are exactly q polynomials of degree at most n− 1 that agree with
the n− 1 packets which Bob received). This error-correcting scheme is therefore optimal: it can recover
the n characters of the transmitted message from any n received characters, but recovery from any fewer
characters is impossible.

General Errors
Let us now consider a much more challenging scenario. Now Alice wishes to communicate with Bob over a
noisy channel (say via a modem). Her message is m1, . . . ,mn, where we will think of the mi’s as characters
(either bytes or characters in the English alphabet). The problem now is that some of the characters are
corrupted during transmission due to channel noise. So Bob receives exactly as many characters as Alice
transmits. However, k of them are corrupted, and Bob has no idea which k. Recovering from such general
errors is much more challenging than erasure errors, though once again polynomials hold the key.

Let us again think of each character as a number modulo q for some prime q (for the English alphabet q is
some prime larger than 26, say q = 29). As before, we can describe the message by a polynomial P(x) of
degree n− 1 over GF(q), such that P(1) = m1, . . . , P(n) = mn. As before, to cope with the transmission
errors Alice will transmit additional characters obtained by evaluating P(x) at additional points. As we
shall see shortly, in order to guard against k general errors, Alice must transmit 2k additional characters
(as opposed to just k additional packets as was the case with erasure errors). Thus the encoded message
is c1, . . . ,cn+2k where c j = P(j) for 1 ≤ j ≤ n+ 2k, and n+ k of these characters that Bob receives are

CS 70, Fall 2012, Note 8 2

uncorrupted. As before, we must put the mild constraint on q that it be large enough so that q≥ n+2k.

For example, if Alice wishes to send n = 4 characters to Bob via a modem in which k = 1 of the characters
is corrupted, she must redundantly send an encoded message consisting of 6 characters. Suppose she wants
to transmit the same message as above, and that c1 is corrupted and changed to c′1 = 2. This scenario can be
visualized in the following figure:

From Bob’s viewpoint, the problem of reconstructing Alice’s message is the same as reconstructing the
polynomial P(x) from the n + 2k received characters R(1),R(2), . . . ,R(n + 2k). In other words, Bob is
given n+2k values modulo q, R(1),R(2), . . . ,R(n+2k), with the promise that there is a polynomial P(x) of
degree n−1 over GF(q) such that R(i) = P(i) for n+ k distinct values of i between 1 and n+2k. Bob must
reconstruct P(x) from this data (in the above example, n+ k = 5 and R(2) = P(2) = 1, R(3) = P(3) = 5,
R(4) = P(4) = 0, R(5) = P(5) = 6, and R(6) = P(6) = 1). Note, however, that Bob does not know which of
the n+ k values are correct!

Does Bob even have sufficient information to reconstruct P(x)? Our first observation shows that the answer
is yes: there is a unique polynomial that agrees with R(x) at n+ k points. Suppose that P′(x) is any polyno-
mial of degree n−1 that agrees with R(x) at n+ k points. Then among these n+ k points there are at most
k errors, and therefore on at least n points xi we must have P′(xi) = P(xi). But a polynomial of degree n−1
is uniquely defined by its values at n points, and therefore P(x) = P′(x) (for all x).

But how can Bob quickly find such a polynomial? The issue at hand is the locations of the k errors. Let
e1, . . . ,ek be the k locations at which errors occurred. Note that P(ei) 6= R(ei) for 1≤ i≤ k:

We could try to guess where the k errors lie, but this would take too long (it would take exponential time, in
fact). Consider the so-called error-locator polynomial E(x) = (x−e1)(x−e2) · · ·(x−ek), which has degree
k (since x appears k times).

Let us make a simple but crucial observation: P(i)E(i) = R(i)E(i) for 1 ≤ i ≤ n+2k (this is true at points
i at which no error occurred since P(i) = R(i), and trivially true at points i at which an error occurred
since E(i) = 0). This observation forms the basis of a very clever algorithm invented by Berlekamp and
Welch. Looking more closely at these equalities, we will show that they are n+2k linear equations in n+2k
unknowns, from which the locations of the errors and coefficients of P(x) can be easily deduced.

Let P(x)E(x) = Q(x), which is a polynomial of degree n+ k− 1, and is therefore described by n+ k co-
efficients. The error-locator polynomial E(x) = (x− e1) · · ·(x− ek) has degree k and is described by k+ 1

CS 70, Fall 2012, Note 8 3

coefficients, but the leading coefficient (coefficient of xk) is always 1. So we have:

Q(x) = an+k−1xn+k−1 + · · ·+a1x+a0

E(x) = xk +bk−1xk−1 + · · ·+b1x+b0

Once we fix a value i for x, the received value R(i) is fixed. Also, Q(i) is now a linear function of the n+ k
coefficients an+k−1 . . .a0, and E(i) is a linear function of the k coefficients bk−1 . . .b0. Therefore the equation
Q(i) = R(i)E(i) is a linear equation in the n+ 2k unknowns an+k−1, . . . ,a0 and bk−1, . . . ,b0. We thus have
n+2k linear equations, one for each value of i, and n+2k unknowns. We can solve these equations and get
E(x) and Q(x). We can then compute the ratio Q(x)

E(x) to obtain P(x).

Example. Suppose we are working over GF(7) and Alice wants to send Bob the n = 3 characters “3,” “0,”
and “6” over a modem. Turning to the analogy of the English alphabet, this is equivalent to using only the
first 7 letters of the alphabet, where a = 0, . . . ,g = 6. So the message which Alice wishes for Bob to receive
is “dag”. Then Alice interpolates to find the polynomial

P(x) = x2 + x+1,

which is the unique polynomial of degree 2 such that P(1) = 3, P(2) = 0, and P(3) = 6.

Suppose that k = 1 character is corrupted, so she needs to transmit the n+ 2k = 5 characters P(1) = 3,
P(2) = 0, P(3) = 6, P(4) = 0, and P(5) = 3 to Bob. Suppose P(1) is corrupted, so he receives 2 instead of 3
(i.e., Alice sends the encoded message “dagad” but Bob instead receives “cagad”). Summarizing, we have
the following situation:

Let E(x) = (x− e1) be the error-locator polynomial—remember, Bob doesn’t know what e1 is yet since he
doesn’t know where the error occurred—and let the degree 3 polynomial Q(x) = R(x)E(x) for x = 1 to 5.
Now Bob just substitutes x = 1, x = 2, . . . , x = 5 to get five linear equations in five unknowns (recall that we
are working modulo 7 and that R(i) = c′i is the value Bob received for the i-th character):

a3 +a2 +a1 +a0 +5b0 = 2

a3 +4a2 +2a1 +a0 = 0

6a3 +2a2 +3a1 +a0 +b0 = 4

a3 +2a2 +4a1 +a0 = 0

6a3 +4a2 +5a1 +a0 +4b0 = 1

Bob then solves this linear system and finds that a3 = 1, a2 = 0, a1 = 0, a0 = 6, and b0 = 6 (all mod 7). (As
a check, this implies that E(x) = x+6 = x−1, so the location of the error is position e1 = 1, which is correct
since the first character was corrupted from a “d” to a “c”.) This gives him the polynomials Q(x) = x3 +6
and E(x) = x− 1. He can then find P(x) by computing the quotient P(x) = Q(x)

E(x) =
x3+6
x−1 = x2 + x+ 1. Bob

notices that the first character was corrupted (since e1 = 1), so now that he has P(x), he just computes
P(1) = 3 = “d” and obtains the original, uncorrupted message “dag”.

CS 70, Fall 2012, Note 8 4

Finer Points

Two points need further discussion. How do we know that the n+2k equations are consistent? What if they
have no solution? This is simple. The equations must be consistent since Q(x) = P(x)E(x) together with the
error locator polynomial E(x) gives a solution.

A more interesting question is this: how do we know that the n+2k equations are independent, i.e., how do
we know that there aren’t other spurious solutions in addition to the real solution that we are looking for?
Put more mathematically, how do we know that the solution Q′(x) and E ′(x) that we reconstruct satisfies the
property that E ′(x) divides Q′(x) and that Q′(x)

E ′(x) =
Q(x)
E(x) =P(x)? To see this notice that Q(x)E ′(x) =Q′(x)E(x)

for 1≤ x≤ n+2k. This holds trivially whenever E(x) or E ′(x) is 0, and otherwise it follows from the fact that
Q′(x)
E ′(x) =

Q(x)
E(x) = R(x). But the degree of Q(x)E ′(x) and Q′(x)E(x) is n+2k−1. Since these two polynomials

are equal at n+ 2k points, it follows that they are the same polynomial, and thus rearranging we get that
Q′(x)
E ′(x) =

Q(x)
E(x) = P(x).

CS 70, Fall 2012, Note 8 5

