1. Covariance

We have a bag of 5 red and 5 blue balls. We take two balls from the bag without replacement. Let X_{1} and X_{2} be indicator random variables for the first and second ball being red. What is $\operatorname{Cov}\left(X_{1}, X_{2}\right)$?

2. LLSE

We have two bags of balls. The fractions of red balls and blue balls in bag A are $\frac{2}{3}$ and $\frac{1}{3}$ respectively. The fractions of red balls and blue balls in bag B are $\frac{1}{2}$ and $\frac{1}{2}$ respectively. Someone gives you one of the bags (unmarked) uniformly at random. Then we draw 6 balls from the same bag with replacement. Let X_{i} be the indicator random variable that ball i is red. Now, let us define $X=\sum_{1 \leq i \leq 3} X_{i}$ and $Y=\sum_{4 \leq i \leq 6} X_{i}$. Find $\operatorname{LLSE}(Y \mid X)$. [Hint: recall that $\left.\operatorname{LLSE}(Y \mid X)=E(Y)+\frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(X)}(X-E(X))\right]$

3. Confidence interval

Let $\left\{X_{i}\right\}_{1 \leq i \leq n}$ be a sequence of iid Bernoulli random variables with parameter μ. Assume we have enough samples such that $P\left(\left|\frac{1}{n} \sum_{1 \leq i \leq n} X_{i}-\mu\right|>0.1\right)=0.05$.
Can you give 95% confidence interval for μ if you are given the outcomes of X_{i} ?

