CS $70 \quad$ Discrete Mathematics and Probability Theory

Spring 2016 Rao and Walrand

1. Let $P(x)$ and $Q(x)$ denote some propositions involving x. For each statement below, either prove that the statement is correct or provide a counterexample if it is false.
(a) $\forall x(P(x) \vee Q(x))$ is equivalent to $(\forall x, P(x)) \vee(\forall x, Q(x))$.
(b) $\forall x(P(x) \wedge Q(x))$ is equivalent to $(\forall x, P(x)) \wedge(\forall x, Q(x))$.
(c) $\exists x(P(x) \vee Q(x))$ is equivalent to $(\exists x, P(x)) \vee(\exists x, Q(x))$.
(d) $\exists x(P(x) \wedge Q(x))$ is equivalent to $(\exists x, P(x)) \wedge(\exists x, Q(x))$.
2. A perfect square is an integer n of the form $n=m^{2}$ for some integer m. Prove that every odd perfect square is of the form $8 k+1$ for some integer k.
3. Prove that $2^{1 / n}$ is not rational for any integer $n>3$. [Hint : Fermat's Last Theorem]
4. Prove that if you put $n+1$ apples into n boxes, any way you like, then at least one box must contain at least 2 apples. This is known as the pigeonhole principle.
5. Numbers of Friends

Prove that if there are $n \geq 2$ people at a party, then at least 2 of them have the same number of friends at the party.

