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1. Repeated Squaring Compute 3383 (mod 7). (Via repeated squaring!)

2. Modular Potpourri

(a) Evaluate 496 (mod 5)

(b) Prove or Disprove: There exists some x ∈ Z such that x ≡ 3 (mod 16) and x ≡ 4 (mod
6).

(c) Prove or Disprove: 2x≡ 4 (mod 12) ⇐⇒ x≡ 2 (mod 12)

3. Just a Little Proof
Suppose that p and q are distinct odd primes and a is an integer such that gcd(a, pq) = 1.
Prove that a(p−1)(q−1)+1 ≡ a (mod pq).

4. Euler’s totient function
Euler’s totient function is defined as follows:

φ(n) =| {i : 1≤ i≤ n,gcd(n, i) = 1} |

In other words, φ(n) is the total number of positive integers less than n which are relatively
prime to it. Here is a property of Euler’s totient function that you can use without proof:

For m,n such that gcd(m,n) = 1, φ(mn) = φ(m) ·φ(n).

(a) Let p be a prime number. What is φ(p)?

(b) Let p be a prime number and k be some positive integer. What is φ(pk)?

(c) Let p be a prime number and a be a positive integer smaller than p. What is aφ(p)

(mod p)?
(Hint: use Fermat’s Little Theorem.)

(d) Let b be a number whose prime factors are p1, p2, . . . , pk. We can write b = pα1
1 ·

pα2
2 . . . pαk

k .
Show that for any a relatively prime to b, the following holds:

∀i ∈ {1,2, . . . ,k}, aφ(b) ≡ 1 (mod pi)
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